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ABSTRACT
Viewpoint selection plays a pivotal role in projection-based
point cloud quality assessment (PCQA). Generally speak-
ing, sole reliance on a single projection fails to capture ad-
equate quality information, leading to the prevalent use of
multi-projection approaches. It is important to recognize
that viewpoint selection is significantly influenced by human
preferences and viewpoints that align with human predilec-
tions exert a greater impact on PCQA. Therefore, we intro-
duce the first viewpoint selection database for PCQA, which
comprises 405 distorted point clouds, accompanied by pre-
ferred viewpoints collected from humans. Then we propose
a novel human preference index, devised from the Visible-
Points Ratio and Visible-Color-Entropy Ratio, to guide the
selection of viewpoints. Our experimental findings confirm
that this human preference index correlates more closely with
human preferences than traditional viewpoint selection set-
tings. Moreover, the proposed PCQA method optimized with
the human preference index demonstrates competitive perfor-
mance as well.

Index Terms— Viewpoint selection, Projection-based,
Point cloud quality assessment

1. INTRODUCTION

Point cloud quality assessment (PCQA) is targeted at predict-
ing the visual quality levels of the point clouds. During the
last decade, many PCQA models have been developed, which
can be divided into model-based and projection-based PCQA
methods. The model-based PCQA methods [1, 2, 3, 4, 5, 6, 7]
extract quality-aware features directly from the point cloud.
Benefiting from the advanced 2D quality assessment tech-
niques [8, 9, 10, 11, 12, 13, 14, 15], the projection-based
PCQA models [16, 17] infer the point cloud quality via the
rendered projections, where viewpoint selection is very sig-
nificant.
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Fig. 1. The framework of the proposed approach. 42 projec-
tions are generated from the geodesic sphere sampling pro-
cess. Then the viewpoints are proposed with the Human Pre-
ferred Index and forwarded as the input of the projection-
based PCQA model.

However, few efforts have been put into investigating the
viewpoint selection for the PCQA task currently. Therefore,
in this paper, we propose the first-of-a-kind viewpoint selec-
tion database for the PCQA task. Specifically, we collect
15 high-quality source point clouds and derive 405 distorted
point clouds for the subjective rating. During the subjective
experiment, the human subjects can freely rotate the point
cloud (with fixed viewing distance) for observation and are re-
quired to record their preferred viewpoints (at least THREE)
based on the principle that these viewpoints are suitable for
quality evaluation from their perspective. Considering the
viewpoints are infinite, we project the recorded viewpoints to
the closest geodesic sphere sampled (GSS) viewpoints as the
ground truth. Then we can obtain the most-preferred GSS-
viewpoints list ranked by the votes from the human subjects.
Afterward, we design a novel viewpoint preference index
to predict the preferred viewpoints of the point cloud based
on the Visible-Points Ratio and Visible-Color-Entropy Ratio.
The experimental results reveal that the proposed viewpoint
preference index has a high correlation with human prefer-
ence. More importantly, the proposed PCQA method opti-
mized with the human preference index achieves the best per-
formance among the PCQA competitors, which further con-
firms the effectiveness of the human preference index.
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Fig. 2. Overview of the selected 15 reference point clouds,
which contain 8 humans and 7 objects.

2. RELATED WORKS

During the early stages of PCQA development, MPEG in-
troduces several point-based full-reference (FR) PCQA tech-
niques, notably p2point [1] and p2plane [2]. A point-based
PSNR-yuv is later introduced to handle colored point clouds
[3]. However, these methods face challenges in accurately de-
picting complex distortions at the point level, leading to the
development of advanced FR-PCQA metrics such as PCQM
[4], GraphSIM [5], and PointSSIM [6], which incorporate
structural features and demonstrate significant improvements
in performance.

Various NR-PCQA methods are also developed to cater to
a broader range of applications. Chetouani et al. [18] apply
classical CNN models for quality regression after extracting
patch-wise hand-crafted features. PQA-net [16] uses multi-
view projection for feature extraction. Zhang et al. [19] es-
timate quality-aware parameters from the distributions of ge-
ometry and color attributes using several statistical distribu-
tions. Liu et al. [7] utilize an end-to-end sparse CNN for qual-
ity prediction, while Zhou et al. [20] adopt structure-guided
resampling for extracting quality-related features. Some re-
search [21, 22] even converts point clouds into videos and
leverages video quality assessment (VQA) techniques for
evaluating perceptual quality. Yang et al. [23] additionally
transfer quality information from natural images to compre-
hend the quality of point cloud rendering images using do-
main adaptation. However, these methods focus on single-
modal information and do not effectively integrate multi-
modal quality information.

Table 1. Details for distortion generation. The distortion val-
ues are adjusted manually to cover the majority quality range.

Type Distortion Parameter Description Value
Color Noise Color noise standard deviation 20, 30, 40, 50

Downsampling Points Removal Proportion 25%, 50%, 75%, 90%
Geometry Noise Geometry noise standard deviation 5, 25, 50, 70
G-PCC (octree) Octree-based G-PCC compression parameter 28, 34, 40, 46, 51
G-PCC (trisoup) Trisoup-based G-PCC compression parameter 22, 28, 34, 40, 46

V-PCC V-PCC compression parameter 20, 24, 28, 32, 37

3. DATABASE CONSTRUCTION

3.1. Point Clouds Generation

To ensure the diversity of the reference point clouds, we se-
lect both high-quality human and object point clouds. The
overview of the selected point clouds is exhibited in Fig.2,
from which we can see that the collected point clouds are
rich in color and texture. To investigate the impact of differ-
ent distortions on the human-preferred viewpoint selection,
we further degrade the point clouds with 6 common distor-
tions, which include color noise, downsampling, geometry
noise, G-PCC (octree) compression [24], G-PCC (trisoup)
compression [24], and V-PCC compression [24]. The de-
tailed distortion description and parameters are listed in Ta-
ble 1. It’s worth mentioning that there are five levels for
the compression distortions and four levels for the others.
Then 15×27=405 distorted point clouds are obtained in the
end. Additionally, the examples of the distorted Biplane point
clouds are illustrated in Fig. 3.

3.2. Human-Preferred Viewpoints Collection

A total of 20 human subjects are invited to participate in the
subjective experiment. We design a 2D interface on the screen
which allows the viewers to freely rotate the point clouds with
the default viewing distance for observation. During the ob-
servation, the viewers are required to select at least THREE
preferred (based on the principle that the viewpoints are suit-
able for PCQA) viewpoints by pressing the space key, and
the preferred viewpoints’ camera parameters are recorded for
the collection. Thus there are more than 15×3×405=18,225
annotations collected at last.

3.3. Geodesic Sphere Sampling

A point cloud is visible from infinite viewpoints on the view-
ing sphere. The subjective experiment offers continuous
viewpoints on this sphere. However, the viewpoint selection
methods work with a finite set of viewpoints, necessitating the
sampling of the viewing sphere. Consequently, we employ
a geodesic sphere sampling (GSS) approach [25] to achieve
uniform sampling of viewpoints from the viewing sphere.
The detailed explanation for the geodesic sphere is shown in
Fig. 4. We then project the human-preferred perspectives
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Fig. 3. Examples of the distorted Biplane point clouds.
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Fig. 4. The evolving process of the geodesic sphere. A
geodesic sphere is initiated from a regular icosahedron. The
triangular faces of the icosahedron are repeatedly subdivided
into smaller triangles to increase the sphere’s resolution. Con-
sidering the computation complexity and rendering resources
consumption, we choose the ’Subdivision=1’ geodesic sphere
as the default GSS setting, which includes 42 uniform view-
points.

onto the closest GSS-viewpoints as the ground truth. There-
fore, for each viewer, we can obtain at least THREE human-
preferred GSS-viewpoints for a single point cloud. Then we
can derive the most-preferred GSS-viewpoints list ranked by
the votes of the viewpoints for each distorted point cloud (the
viewpoints that are voted for only once are ignored).

3.4. Subjective Data Analysis

With the collected human-preferred GSS-viewpoints, we ex-
hibit the heatmaps of the viewpoint distributions for each
group of point clouds in Fig. 5. From the heatmaps, we can
make several interesting observations: a) The preferred GSS-
viewpoints for human point clouds tend to be more consistent
and centered compared to those for object point clouds. Upon
analysis, it is evident that viewers generally favor the frontal
view when it comes to human point clouds, a preference that
does not extend to object point clouds. b) The symmetric
point clouds tend to have more scattered viewpoints such as
Biplane and Statue. This is because the scattered viewpoints
might have similar viewing content due to the symmetry.
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Fig. 5. The heatmaps for the human-preferred viewpoints dis-
tribution. It is apparent that the preferred GSS-viewpoints of
object point clouds are more scattered than the human point
clouds.

4. VIEWPOINT SELECTION & QUALITY
ASSESSMENT

In this section, we propose a viewpoint selection method
based on the visible points and show how to advance the NR-
PCQA methods with the selected viewpoints.

4.1. Viewpoint Selection Module

4.1.1. Visible-Points Ratio

As proven in [25], humans prefer viewpoints with more view-
ing area since these viewpoints can provide more information.
Therefore, we utilize the visible-points ratio to represent the
viewing area:

Rvi
P =

N̂vi
p

Np
,

V ={vi|i = 0 ∼ Nv − 1},
(1)

where V indicates the set of GSS-viewpoints, Nv is the num-
ber of GSS-viewpoints, N̂vi

p represents the visible points
number of the i-th GSS-viewpoint, Np is the number of all
the points in the point cloud, and Rvi

P stands for the visible-
points ratio (VPR) of the i-th GSS-viewpoint.

4.1.2. Visible-Color-Entropy Ratio

Furthermore, to incorporate color information into the view-
point selection, we propose a visible-color-entropy ratio to
address this issue:

Rvi
CE =

Êvi
r

Er
+

Êvi
g

Eg
+

Êvi
b

Eb
, (2)

where Êvi
r , Êvi

g , and Êvi
b denote the RGB entropy values of

the i-th GSS-viewpoint, Er, Eg , and Eb stand for the RGB
entropy values of all points in the point cloud, and Rvi

CE rep-
resents the visible-color-entropy ratio (VCER).



4.1.3. Viewpoint Preference Index

Afterward, the final viewpoint preference index can be ob-
tained as the weighted sum of VPR and VCER:

VPIvi = W1Rvi
P +W2Rvi

CE , (3)

where VPIvi is the preference index for the i-th GSS-
viewpoint, and W1 and W2 are the weight parameters. Fi-
nally, we can rank the GSS-viewpoint set according to the
preference index:

Ṽ = sort (V, key = VPIvi) , (4)

where Ṽ is the preference index sorted GSS-viewpoints list.

4.2. Quality Assessment Module

4.2.1. Projection Rendering

To investigate the impact of the viewpoint selection module,
we simply employ a multi-projection NR-PCQA approach as
the quality assessment module. Given the top-k preferred
viewpoints from the sorted GSS-viewpoints list Ṽ , we first
obtain the rendered projections of the point cloud:

P = {pj |pj = ϕ(vj), j = 0 ∼ k − 1}, (5)

where ϕ(·) indicates the rendering process, P is the set of the
projections from the top-k preferred viewpoints. The render-
ing process is assisted with the Python opend package, where
we keep the default rendering setup. Additionally, the white
background of the projections is cropped out.

4.2.2. Feature Extraction

We then incorporate the rendered 2D projections into quality-
aware space with a 2D image encoder:

Fj = α(pj),

F̃ =
1

k

k−1∑
t=0

Fj ,
(6)

where Fj ∈ R1×C stands for the quality-aware embedding for
the j-th rendered projection pj , C denotes the number of out-
put channels of the 2D image encoder α(·), and F̃ ∈ R1×C is
the pooled results after average fusion.

4.2.3. Quality Regression

For simplification, we employ a two-stage fully-connected
layer to map the averaged quality-aware embedding F̃ to the
estimated quality scores. Our evaluation not only consid-
ers the prediction precision but also emphasizes their rela-
tive rankings. Consequently, the loss function comprises both

Table 2. Performance results of Precision@k (k=1,2,3)
for random viewpoints, cube-like viewpoints, and pro-
posed viewpoints selection. Precision@k indicates the
possibility of involving the human-preferred viewpoints in
the corresponding top-k viewpoints selection. For in-
stance, Precision@6=36.34% represents that there are about
2.18=39.91%×6 human-preferred viewpoints in the top-6
viewpoints selection on average. Best in BOLD.

Precision@k k=1 k=3 k=6
Random Viewpoints Selection 12.83% 12.51% 13.37%

Cube-like Viewpoints Selection 9.62% 21.89 % 18.40%
Proposed Viewpoints Selection 62.96% 50.04% 36.34%

Mean Squared Error (MSE) for accuracy and a rank error for
ordering. The MSE can be expressed as:

LMSE =
1

n

n∑
η=1

(qη − q′η)
2, (7)

where qη represents the estimated quality scores, q′η denotes
the actual quality labels for the point cloud, and n is the batch
size. To better differentiate quality distinctions between point
clouds with similar quality labels, we introduce a rank loss.
This is approximated using the differentiable ranking function
from [26], which is formulated as:

Lij
rank=max

(
0, |qi − qj |−e (qi, qj)·

(
q′i − q′j

))
,

e (qi, qj) =

{
1, qi ≥ qj ,

−1, qi < qj ,

(8)

where i and j indicate two distinct point clouds within a
batch. The rank loss is then computed as:

Lrank =
1

n2

n∑
i=1

n∑
j=1

Lij
rank, (9)

The overall loss function is a weighted sum of the MSE and
rank losses:

Loss = λ1LMSE + λ2Lrank, (10)

where λ1 and λ2 balance the contribution of MSE and rank
losses respectively.

5. EXPERIMENT

5.1. Towards Viewpoint Selection Accuracy

We first assess the efficacy of the viewpoint selection module.
For each distorted point cloud, we can get a preference index
sorted GSS-viewpoints list and the human-preferred GSS-
viewpoints list (ranked by the votes of the human subjects).
Therefore, we employ the Precision metric to reflect the ac-
curacy for including the human-preferred GSS-viewpoints in
the proposed 6 viewpoints. The outcomes, detailed in Table 2,



reveal that our viewpoint preference index substantially out-
performs both random and conventional cube-based selection
methods in accuracy. These findings further corroborate the
robustness of our viewpoint selection approach.

5.2. Towards Quality Assessment Accuracy

5.2.1. Quality Assessment Competitors

We choose 14 popular PCQA methods for comparison, which
include 8 FR-PCQA methods and 6 NR-PCQA methods. The
FR-PCQA methods consist of MSE-p2point (MSE-p2po) [1],
Hausdorff-p2point (HD-p2po) [1], MSE-p2plane (MSE-p2pl)
[2], Hausdorff-p2plane (HD-p2pl) [2], PSNR-yuv [3], PCQM
[4], GraphSIM [5], and PointSSIM [6]. The NR-PCQA meth-
ods consist of BRISQUE [8], NIQE [9], IL-NIQE [10], ResS-
CNN [7], PQA-net [16], and 3D-NSS [19].

It’s worth noting that BRISQUE, NIQE, IL-NIQE are
image-based quality assessment metrics and are validated
on the projections. Three mainstream criteria are utilized
for evaluation, which include Spearman Rank Correlation
Coefficient (SRCC), Pearson Linear Correlation Coefficient
(PLCC), and Root Mean Squared Error (RMSE).

5.2.2. Implementation Details

The subjective point cloud assessment database (SJTU-
PCQA) [27] and the Waterloo point cloud assessment
database (WPC) [28] are used for validation, which are ap-
plied with 9-fold and 5-fold cross-validation split strategy as
stated in [29] respectively. There is no content overlap be-
tween the training and testing sets.

The Adam optimizer is utilized with a weight decay of
10−4. The initial learning rate is set to 5 × 10−5, and the
batch size is set to 8. The model undergoes training for a total
of 50 epochs. The default number of the proposed viewpoints
is established at 4. The projections are rendered with the
assistance of Open3d with a resolution of 1080P, which are
then randomly cropped into image patches with dimensions
of 224×224×3 as input. The image encoder is implemented
using the Swin Transformer tiny model [30], initialized with
pre-trained weights from the ImageNet database [31]. The
weighting coefficients λ1 and λ2 for the loss functions LMSE

and Lrank are both set to 1.

5.2.3. Performance Discussion

The experimental results are presented in Table 3, which
clearly demonstrates that the proposed method outperforms
existing approaches on the two PCQA databases under con-
sideration. Furthermore, it is noteworthy that all evaluated
methods exhibit a marked decline in performance when tran-
sitioning from the SJTU-PCQA to the WPC database. This is
attributed to the more intricate and nuanced distortion levels

Table 3. Performance comparison with state-of-the-art ap-
proaches on the SJTU-PCQA and WPC databases. Best in
BOLD.

Type Methods SJTU-PCQA WPC
SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

FR

MSE-p2po 0.7294 0.8123 1.3613 0.4558 0.4852 19.8943
HD-p2po 0.7157 0.7753 1.4475 0.2786 0.3972 20.8990
MSE-p2pl 0.6277 0.5940 2.2815 0.3281 0.2695 22.8226
HD-p2pl 0.6441 0.6874 2.1255 0.2827 0.2753 21.9893
PSNR-yuv 0.7950 0.8170 1.3151 0.4493 0.5304 19.3119
PCQM 0.8644 0.8853 1.0862 0.7434 0.7499 15.1639
GraphSIM 0.8783 0.8449 1.0321 0.5831 0.6163 17.1939
PointSSIM 0.6867 0.7136 1.7001 0.4542 0.4667 20.2733

NR

BRISQUE 0.3975 0.4214 2.0937 0.2614 0.3155 21.1736
NIQE 0.1379 0.2420 2.2622 0.1136 0.2225 23.1415
IL-NIQE 0.0837 0.1603 2.3378 0.0913 0.1422 24.0133
ResSCNN 0.8600 0.8100 - - - -
PQA-net 0.8372 0.8586 1.0719 0.7026 0.7122 15.0812
3D-NSS 0.7144 0.7382 1.7686 0.6479 0.6514 16.5716
Proposed 0.9041 0.9155 0.9263 0.8329 0.8137 12.9895

Table 4. Results of ablation study on the SJTU-PCQA and
WPC databases, where the proposed preference viewpoints
selection is replaced with the random and cube-like view-
points selection. Best in BOLD.

Models SJTU-PCQA WPC
SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

with Random 0.8517 0.8649 1.3273 0.7800 0.7815 14.6358
with Cube-like 0.8760 0.8689 1.3089 0.7990 0.8023 14.0019
with Proposed 0.9041 0.9155 0.9263 0.8329 0.8137 12.9895

featured in the WPC database, posing greater challenges for
performance maintenance.

Moreover, an ablation study is carried out to evaluate the
efficacy of the proposed viewpoint selection module. The
findings are delineated in Table 4. The results indicate that
substituting the proposed viewpoint selection algorithm with
random or cube-like projections results in a decrease in per-
formance. This observation underscores the significance and
effectiveness of the proposed viewpoint selection approach.

6. CONCLUSION

In conclusion, our research underscores the vital role of
viewpoint selection for projection-based PCQA models. We
have introduced the first comprehensive viewpoint selection
database tailored for PCQA. Our novel human preference in-
dex, developed using the Visible-Points Ratio and Visible-
Color-Entropy Ratio, emerges as a pivotal tool in guiding
viewpoint selection, ensuring it aligns more closely with hu-
man preferences. The experimental results from our study not
only validate the correlation of our index with human prefer-
ences but also demonstrate the enhanced performance of our
proposed PCQA method.
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