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Abstract

Large pre-trained models achieve remarkable performance
in vision tasks but are impractical for fine-tuning due to
high computational and storage costs. Parameter-Efficient
Fine-Tuning (PEFT) methods mitigate this issue by updat-
ing only a subset of parameters; however, most existing
approaches are task-agnostic, failing to fully exploit task-
specific adaptations, which leads to suboptimal efficiency
and performance. To address this limitation, we propose
Task-Relevant Parameter and Token Selection (TR-PTS),
a task-driven framework that enhances both computational
efficiency and accuracy. Specifically, we introduce Task-
Relevant Parameter Selection, which utilizes the Fisher In-
formation Matrix (FIM) to identify and fine-tune only the
most informative parameters in a layer-wise manner, while
keeping the remaining parameters frozen. Simultaneously,
Task-Relevant Token Selection dynamically preserves the
most informative tokens and merges redundant ones, reduc-
ing computational overhead. By jointly optimizing param-
eters and tokens, TR-PTS enables the model to concentrate
on task-discriminative information. We evaluate TR-PTS on
benchmark, including FGVC and VTAB-1k, where it achieves
state-of-the-art performance, surpassing full fine-tuning by
3.40% and 10.35%, respectively. The code are available at
https://github.com/synbol/TR-PTS.

1. Introduction

Pre-trained on large-scale datasets and subsequently fine-
tuned for downstream tasks, this paradigm has become the
standard framework across various domains, including Nat-
ural Language Processing (NLP) [2, 5], Computer Vision
(CV) [8, 20, 24, 33, 35], and others [19, 32]. Traditionally,
fine-tuning a pre-trained model to a specific task involves ad-
justing all parameters, a method known as full fine-tuning.

*Equal Contribution.
†Corresponding Author.
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Figure 1. Overview of Our TR-PTS. TR-PTS selectively retains
task-relevant tokens and parameters for efficient fine-tuning.

However, with state-of-the-art models now comprising bil-
lions or even trillions of parameters [22, 27], this conven-
tional approach has become increasingly impractical due to
its exorbitant computational and storage requirements.

Mitigating the inefficiencies of full fine-tuning has led re-
searchers in the CV domain to explore Parameter-Efficient
Fine-Tuning (PEFT) techniques [18, 31, 36, 39], which
update only a subset of model parameters or introduce
lightweight adaptation modules [11, 13, 14]. However, as
summarized in Table 1, existing methods still face several
challenges: (1) Inference Overhead: Some methods, such
as VPT [14], introduce additional learnable modules that in-
crease computational cost during inference. Others, such
as LoRA [13], use reparameterization techniques that can
be merged into the backbone at inference time and there-
fore avoid extra cost. (2) Limited Task-Aware Adaptation:
While some methods have begun to incorporate task-specific
adaptation, such as GPS [39], many still use uniform tun-
ing strategies that overlook the varying importance of model
components across tasks. (3) Disjoint Optimization: Most
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Figure 2. Visualizing the Impact of Each Token on the Final
Prediction. The label ”wrong” indicates an incorrect classification.
These results demonstrate that the final prediction relies primarily
on a subset of the most task-relevant tokens.

approaches optimize parameter selection and token process-
ing separately, although the informativeness of tokens de-
pends heavily on the task, particularly in ViT-based models.
As shown in Figure 2, token importance varies across tasks
and should be considered during optimization. This moti-
vates the development of a unified solution that considers
both task-relevant parameters and informative tokens.

To address these challenges, we propose Task-Relevant
Parameter and Token Selection (TR-PTS), a novel frame-
work that unifies task-driven parameter selection and token
refinement. As illustrated in Figure 1, when a task arrives,
the model’s adaptation is manifested both in parameter sen-
sitivity and token informativeness. Guided by this principle,
our method dynamically identifies the most relevant param-
eters and tokens for the task at hand, enabling the model to
concentrate computation on the most discriminative informa-
tion while avoiding redundant updates.

• Task-Relevant Parameter Selection: Rather than rely-
ing on gradient magnitudes [39], which can be affected
by optimization noise and may not accurately reflect task
importance, we employ the Fisher Information Matrix
(FIM) [16] to quantify parameter sensitivity. We then se-
lect the most critical parameters and use a layer-wise allo-
cation strategy to distribute trainable connections accord-
ing to each layer’s task relevance, reducing the number of
trainable parameters while preserving adaptability.

• Task-Relevant Token Selection: We leverage attention
scores from the [CLS] token to retain the most informative
tokens while merging the rest through weighted averaging.
This allows the model to concentrate attention on discrim-
inative content and reduces computational overhead with-
out sacrificing accuracy.

Empirical observations during system design revealed a
notable correlation between parameter sparsity and token re-
dundancy: layers with fewer task-relevant parameters tend
to encode less informative tokens. Leveraging this insight,
we formulate a coordinated selection strategy that applies to-
ken reduction preferentially to parameter-sparse layers. This
unified, task-aware mechanism enhances computational ef-
ficiency while preserving representational integrity, thereby
achieving a more favorable trade-off between accuracy and
resource consumption.

Method Task Params. Task Tokens Memory Train/Inference
Adaptive Adaptive Efficient Efficient

Full [14] ✗ ✗ ✗ ✗
Linear [14] ✗ ✗ ✓ ✓

BitFit [36] ✓ ✓ ✗ ✗
Adapter [11] ✗ ✗ ✗ ✗

VPT [14] ✗ ✗ ✗ ✗
LoRA [12] ✗ ✗ ✗ ✗
SSF [17] ✗ ✗ ✗ ✗
GPS [39] ✓ ✗ ✗ ✗

TR-PTS (Ours) ✓ ✓ ✓ ✓

Table 1. Comparison of Different Fine-Tuning Methods. Our
method adaptively selects task-relevant parameters and tokens, al-
lowing it to be applied across various model architectures without
adding extra parameters during either training or inference.

We evaluate TR-PTS across a diverse set of 24 image
recognition tasks. Our approach demonstrates state-of-the-
art performance compared to other PEFT methods while
achieving an optimal balance between performance, train-
able parameters, and computational cost, as illustrated in Fig-
ure 1. Compared to full fine-tuning, TR-PTS achieves 3.40%
(FGVC) and 10.35% (VTAB) improvement of the accuracy
while tuning only 0.60% and 0.34% parameters of the pre-
trained model. Additionally, the time required for both fine-
tuning and the inference process is significantly reduced, as
detailed in the referenced Section 4.2.

2. Related Work
2.1. Visual Efficient Fine-Tuning
In the survey on visual efficient fine-tuning [34], exist-
ing methods are generally categorized into five primary ap-
proaches: 1) Adapter Tuning methods [3, 11] introduce
small-scale neural modules (adapters) into Transformer lay-
ers, tuning only these adapters for model adaptation; 2)
Prompt Tuning methods [14] enhance the original input
by adding additional visual prompts; 3) Specification Tun-
ing [36, 39] directly modifies a specific subset of parameters
in the Transformer to improve efficiency; 4) Reparameteri-
zation Tuning methods [12, 17] introduce new learnable pa-
rameters during training, which are later integrated into the
original Transformer layers through reparameterization dur-
ing inference; 5) Unified-based Tuning methods [38] provide
a unified framework that integrates various fine-tuning tech-
niques into a single, cohesive architecture.

The method we propose differs fundamentally from these
existing approaches, as shown in Table 1. While most of
the aforementioned methods focus primarily on the structural
design of the model, our approach emphasizes the identifica-
tion and tuning of important parameters and tokens that are
specifically relevant to the downstream tasks.

2.2. Token Reduction for Efficient ViT
Since the introduction of ViTs, researchers have explored
ways to enhance their efficiency by reducing redundant to-



kens. Existing methods primarily fall into two categories:
token pruning [9, 30] and token merging [1, 25]. Pruning-
based approaches remove less important tokens to lower
computational complexity and merging-based methods pre-
serve more information by fusing similar tokens, reducing
sequence length. The method we propose combines the ad-
vantages of pruning and merging. We dynamically select
task-relevant important tokens for retention. Instead of dis-
carding unimportant tokens, we perform weighted merging
based on task relevance.

3. Method
Our method is built upon Vision Transformer (ViT) [7] archi-
tecture. In the following, we first review the ViT architecture
in Section 3.1. Subsequently, we present the proposed Task-
Relevant Parameter and Token Selection (TR-PTS) in Sec-
tion 3.2 and Section 3.3. Finally, we present the integration
of these components into a unified Task-Driven Fine-Tuning
strategy in Section 3.4.

3.1. Preliminary
The standard ViT consists of a patch embedding layer and a
stack of Transformer layers. Given an image I ∈ RH×W×C ,
the patch embedding layer first splits and flatten the image
I into sequential patches Ip ∈ RN×(P 2C), where (H,W )
represents the height and width of the input image, (P, P ) is
the resolution of each image patch, C denotes the number of
channels, and N = HW/P 2 is the number of image tokens.
Then, the patches Ip are mapped to X0 = [x1, x2, ..., xN ] ∈
RN×d using a trainable linear projection. The inputs to the
Transformer layers consist of X0 along with a prepended
[CLS] token.

3.2. Task-Relevant Parameter Selection
Existing gradient-based parameter selection methods [39] of-
ten fail to capture task relevance effectively, leading to uni-
form parameter selection across layers. To address this,
we introduce a layer-wise selection strategy leveraging the
Fisher Information Matrix (FIM) [16], which quantifies each
parameter’s contribution to task-specific adaptations.

3.2.1. Fisher Information Matrix (FIM)
FIM evaluates the sensitivity of model outputs to perturba-
tions in parameters. Higher FIM values indicate stronger task
relevance, suggesting priority for fine-tuning. Formally, the
FIM for model parameters θ is:

F(θ) = E

[(
∂ log p(y|x; θ)

∂θ

)(
∂ log p(y|x; θ)

∂θ

)⊤
]
, (1)

where p(y|x; θ) represents the conditional probability of out-
put y given input x. This matrix characterizes the covariance
of the gradient of the log-likelihood with respect to the model
parameters, thereby identifying the parameters that exert the
most substantial influence on task performance.

In practice, we approximate the FIM using the gradients
of the cross-entropy loss function LCE in image classification
tasks, as its gradient aligns with the first-order derivatives of
the log-likelihood function. Specifically, we use the squared
gradients to approximate the diagonal of the FIM:

F(θ) ≈ E(x,y)∼D

[(
∂LCE

∂θ

)2
]
. (2)

This approximation avoids the complexity of explicitly
computing second-order derivatives while providing an ef-
ficient estimate of parameter importance in relation to the
target task.

3.2.2. Layer-Wise Parameter Allocation
Task-Relevant Layer Importance. Instead of selecting
parameters uniformly across layers, we introduce a layer-
aware allocation strategy to ensure balanced adaptation. We
compute task-driven layer-wise importance scores using the
Fisher Information Matrix (FIM), allowing us to allocate
trainable parameters based on their task relevance.

Once the FIM is computed for all parameters, we first se-
lect the top M% of parameters with the highest FIM values.
Let Itop-M denote this subset of selected parameters. The con-
tribution of each layer l is computed as:

wl =
|Itop-M ∩ Ll|

|Itop-M|
, (3)

where Ll represents the parameters in layer l. The computed
wl values determine the relative importance of each layer,
ensuring that task-relevant layers receive more trainable pa-
rameters.

Adaptive Layer-Wise Parameter Selection. Inspired by
the Gradient-based Parameter Selection (GPS) method [39],
we introduce a selection strategy that ensures each neuron
in layer L fine-tunes exactly Cl connections. To dynamically
allocate trainable connections per layer, we normalize wl rel-
ative to the least important layer:

Cl = max

(
1,

wl

min(w)
· Cmin

)
, (4)

where Cmin represents the minimum number of selected con-
nections per neuron in the least important layer, and min(w)
denotes the smallest observed importance ratio. This formu-
lation guarantees that every layer retains at least one active
connection while allocating a greater number of parameters
to task-critical layers.

Within each layer l, we further refine the selection by
identifying a subset of task-relevant connections per neuron
based on their Fisher Information Matrix (FIM) scores:

Sl = {θi | i ∈ arg top-Cl (F(θi)) , θi ∈ Nl} , (5)

where Nl denotes the set of all input connections to neurons
in layer l. This selection strategy ensures that each neuron
retains a subset of high-FIM parameters, preventing any part
of the network from becoming entirely inactive.
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Figure 3. Architecture of Our Proposed TR-PTS Framework. Top: For Task-Relevant Parameter Selection, we use the Fisher Information
Matrix to determine each layer’s importance and dynamically set the number of trainable connections per neuron (Nl); critical layers receive
more parameters, while every layer updates at least one connection. Bottom: For Task-Relevant Token Selection, attention scores from the
[CLS] token identify key tokens, and less informative tokens are merged via weighted averaging. Trainable parameters are allocated per
layer in proportion to their Fisher scores.

Final Task-Relevant Parameter Set. Given the neuron-
level selection Sn and the dynamically determined per-layer
Cl, the final task-relevant parameter set is:

ΘT =
⋃
l

Sl, where |Sl| = Cl · |Nl|, (6)

Here, | · | denotes the cardinality of a set, i.e., the number
of elements it contains. By focusing on task-relevant param-
eters at both the layer and neuron levels, our method mini-
mizes redundant computations while ensuring fine-tuning ef-
ficiency.

3.3. Task-Relevant Token Selection
In Vision Transformers (ViTs), images are split into patch
tokens processed by self-attention, where token importance
is inherently influenced by parameter distribution. Our Task-
Relevant Parameter and Token Selection (TR-PTS) frame-
work optimizes attention by selecting the most informative
parameters, which in turn adaptively guides token selection.

To further enhance computational efficiency, we perform
Token Selection and Token Merge progressively. Specifi-
cally, token selection is strategically applied to layers with
sparse task-relevant parameters to ensure a balanced trade-
off between parameter fine-tuning and token efficiency. At
each refining layer, we retain only the most task-relevant to-
kens while merging the less informative ones into a single
token. This approach minimizes redundant computation and
allows the model to focus on the most crucial tokens, poten-
tially improving overall performance.

3.3.1. Token Selection
In Vision Transformers (ViTs), the [CLS] token acts as
a global feature aggregator, attending to all image tokens
across layers to accumulate task-discriminative information
for classification.

In self-attention, tokens contribute differently to the final
output, with attention scores reflecting their importance. To-
kens with higher scores influence classification more, while
lower-weighted ones carry less discriminative information.

Formally, in a Transformer layer, the self-attention mech-
anism computes attention scores using the scaled dot-product
formula:

A = softmax
(
QKT

√
d

)
, (7)

where Q and K are the query and key matrices of all tokens,
and d is the key dimension. The attention score ai of an
image token xi relative to the [CLS] token is given by:

ai =
exp(qCLS · ki)∑N
j=1 exp(qCLS · kj)

, (8)

where qCLS is the query vector of the [CLS] token, and ki is
the key vector of token xi. This score quantifies how much
information token xi contributes to the final [CLS] represen-
tation, making it a reliable indicator of task relevance.

To retain the most informative tokens, we introduce a se-
lect rate ρ ∈ (0, 1], which determines the fraction of tokens
to be preserved. Specifically, we retain the top ⌊ρN⌋ tokens
based on their attention scores:



Xselected = {xi | i ∈ arg top-⌊ρN⌋(a)} . (9)

By adaptively selecting tokens based on the attention dis-
tribution rather than a fixed number, our approach ensures
that token selection remains flexible across different layers
and tasks. This not only reduces redundant computation but
also maintains high task performance.

3.3.2. Token Merge
While Token Selection removes redundant tokens, Token
Merge ensures that information from discarded tokens is pre-
served rather than entirely ignored. Instead of discarding
low-attention tokens, we merge them into a single aggregated
token using a weighted averaging process.

Let I be the set of less informative tokens, i.e., tokens that
were not selected based on attention scores. We compute a
fused token xmerged as:

xmerged =

∑
i∈I aixi∑
i∈I ai

. (10)

At each refining layer, token selection and merging are
performed to progressively refine the token sequence. This
merged token is then appended to the selected tokens to form
the refined token sequence:

Xrefined = {xCLS, Xselected, xmerged}. (11)

By merging the discarded tokens into a single represen-
tation, we retain global information while significantly re-
ducing the number of tokens processed in subsequent lay-
ers. This progressive refinement reduces the token sequence
length as the model deepens, lowering both computation and
memory usage.

3.4. Task-Driven Fine-Tuning
After identifying task-relevant parameters (see Section 3.2)
and task-relevant tokens (see Section 3.3), we integrate both
components into a cooperative fine-tuning framework, where
token selection and parameter optimization interactively re-
inforce each other to enhance task adaptation. Let Θ denote
the full set of pre-trained model parameters, and ΘT repre-
sent the subset identified as critical for the target task. To
ensure that only the most relevant parameters are updated,
we introduce a binary mask M over Θ:

Mi =

{
1, if θi ∈ ΘT ,

0, otherwise.
(12)

The model is trained by minimizing the loss function L, com-
puted based on the refined token representation:

min
Θ

L
(
f(Xref; Θ), y

)
, (13)

while ensuring that only the parameters in ΘT are updated.
The update rule at iteration t is formulated as:

Θ(t+1) = Θ(t) − η
(
M ⊙∇ΘL

(
f(Xref; Θ

(t)), y
))

, (14)

where η is the learning rate and ⊙ denotes element-wise mul-
tiplication. This ensures that gradients are only applied to the
task-relevant parameters while the remaining parameters stay
frozen.

By jointly optimizing parameter selection and token re-
finement, our approach enables a mutual enhancement pro-
cess, where the refined tokens guide more task-specific pa-
rameter updates, and the optimized parameters, in turn, re-
fine the token representations. This co-adaptive learning
strategy significantly reduces redundant computations and
memory usage, ensuring that ViTs focus on the most task-
discriminative features for efficient adaptation.

4. Experiments
4.1. Experimental settings
Datasets. We conduct our experiments primarily on a se-
ries of datasets categorized into three types as detailed be-
low: 1) FGVC: Fine-Grained Visual Classification (FGVC)
benchmark [14] includes five downstream tasks, which are
CUB-200-2011 [29], NABirds [28], Oxford Flowers [21],
Stanford Dogs [4] and Stanford Cars [10]. 2) VTAB-1k: Vi-
sual Task Adaptation Benchmark (VTAB) [37] contains of
19 visual classification tasks, which are grouped into three
sets: Natural, Specialized, and Structured. Each task in
VTAB-1k contains 1000 training example.

Pre-Trained Backbones. To ensure a fair comparison, we
align with most of efficient fine-tuning methods [14, 17, 39]
and adopt the plain Vision Transformer [6], i.e., ViT-Base
(ViT-B/16) as our backbone model and pre-train the model
with both supervised method. Specifically, we directly use
the ImageNet-21k [26] supervised pre-trained model.

Baseline Methods. We compare our TR-PTS with a vari-
ety of fine-tuning protocols that can be mainly categorized
into three types [34]: 1) Full Fine-tuning: the most com-
monly used protocol updating all parameters of the whole
model during tuning. 2) Partial-based Tuning: This kind
of method concentrates on updating only a small subset of
inherent parameters while maintaining the majority of the
model’s parameters unchanged during the adaptation pro-
cess, including Linear Probing, BitFit [36], LoRA [12],
SSF [17], and GPS [39]. 3) Addition-based Tuning: This
kind of method involves incorporating additional trainable
modules or parameters into pre-trained backbones to learn
task-specific information, including Adapter [11], Adapt-
Former [3], VPT [14].

Implementation Details. We conduct our experiments on
two main benchmarks: FGVC and VTAB-1k. For a fair com-
parison with existing PEFT methods, models are fine-tuned
using the Adam optimizer [15] with a cosine learning rate
decay schedule for 100 epochs. All experiments are imple-
mented using the PyTorch framework [23].
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Full [14] 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.57 100.00
Linear [14] 63.4 85.0 64.3 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 53.00 0.05

BitFit [36] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 62.05 0.16
Adapter [11] 74.1 86.1 63.2 97.7 87.0 34.6 50.8 76.3 88.0 73.1 70.5 45.7 37.4 31.2 53.2 30.3 25.4 13.8 22.1 55.82 0.31

AdaptFormer [3] 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 72.32 0.24
LoRA [12] 68.1 91.4 69.8 99.0 90.5 86.4 53.1 85.1 95.8 84.7 74.2 83.0 66.9 50.4 81.4 80.2 46.6 32.2 41.1 72.63 0.90

VPT-Shallow [14] 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 64.85 0.13
VPT-Deep [14] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 69.43 0.70

SSF [17] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 73.10 0.28
GPS [39] 81.1 94.2 75.8 99.4 91.7 91.6 52.4 87.9 96.2 86.5 76.5 79.9 62.6 55.0 82.4 84.0 55.4 29.7 46.1 75.18 0.25

TR-PTS (Ours) 81.2 93.9 75.1 99.5 91.9 91.0 54.5 88.1 95.7 87.8 76.6 83.5 63.2 54.8 82.8 87.7 56.9 31.8 46.1 75.92 0.34

Table 2. Performance Comparisons on VTAB-1k with ViT-B/16 Models Pre-trained on ImageNet-21K.
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Figure 4. Comparison of Different Methods in terms of Test Time (ms), Test Memory Usage (GB), and FLOPs (G). The results show
that the TR-PTS method achieves the lowest FLOPs and memory consumption while maintaining competitive test time.

Method
Dataset CUB-200

-2011 NABirds
Oxford
Flowers

Stanford
Dogs

Stanford
Cars Mean Params.(%)

Full [14] 87.3 82.7 98.8 89.4 84.5 88.54 100.00
Linear [14] 85.3 75.9 97.9 86.2 51.3 79.32 0.21

BitFit [36] 88.4 84.2 98.8 91.2 79.4 88.40 0.33
Adapter [11] 87.1 84.3 98.5 89.8 68.6 85.66 0.48

AdaptFormer[3] 88.4 84.7 99.2 88.2 81.9 88.48 0.75
LoRA [12] 85.6 79.8 98.9 87.6 72.0 84.78 0.90

VPT-Shallow [14] 86.7 78.8 98.4 90.7 68.7 84.62 0.29
VPT-Deep [14] 88.5 84.2 99.0 90.2 83.6 89.11 0.99

SSF [17] 89.5 85.7 99.6 89.6 89.2 90.72 0.45
GPS [39] 89.9 86.7 99.7 92.2 90.4 91.78 0.77

TR-PTS (Ours) 90.0 87.1 99.6 92.4 90.6 91.94 0.60

Table 3. Performance Comparisons on Five FGVC Datasets
with ViT-B/16 Models Pre-trained on ImageNet-21K.

4.2. Main Properties and Analysis
We conduct a comprehensive evaluation on two benchmarks,
VTAB and FGVC, which together consist of 24 diverse
datasets. In our experiments, we compare our proposed ap-
proach with leading fine tuning protocols based on Top-1 ac-
curacy and the percentage of fine-tuned parameters. In ad-
dition, we rigorously assess both computational and storage
costs to demonstrate the efficiency of our approach, thereby
validating its practical advantages in terms of both perfor-
mance and resource utilization.

Comparisons on VTAB-1K. For the VTAB benchmark,
our TR-PTS framework achieves substantial improvements
over existing fine-tuning methods. As shown in Table 2,

it attains an average top-1 accuracy of 75.92%, exceeding
full fine-tuning by 10.35% and surpassing GPS by 0.74%,
demonstrating superior performance on 13 subtasks and
state-of-the-art results on 11. Notably, TR-PTS fine-tunes
only 0.34% of model parameters, significantly reducing
computational cost. The superior performance of TR-PTS
stems from its task-relevant token and parameter selection
strategies: layer-wise allocation refines only the most critical
parameters, improving accuracy while minimizing parame-
ter updates, whereas token selection enhances efficiency by
prioritizing task-critical information. By selectively merg-
ing less informative tokens, our method prevents redundancy
while preserving essential representations. These combined
strategies enable TR-PTS to achieve both efficiency and ro-
bustness, making it highly effective for the VTAB bench-
mark.

Comparisons on FGVC. Table 3 shows that TR-PTS
achieves the state of art performance on FGVC datasets,
with an average accuracy of 91.94%, slightly surpassing GPS
(91.78%) and and outperforming full fine-tuning by 3.40%.
While the accuracy gains are marginal, fine-grained classi-
fication presents inherent challenges, with subtle inter-class
differences limiting performance improvements. What dis-
tinguishes TR-PTS is its efficiency. Unlike other methods,
our token selection strategy effectively reduces computa-
tional cost, as quantified by FLOPs (see Figure 4). These
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Figure 5. Differernt Datasets Top 1% FIM Parameter Distribution.

results demonstrate that TR-PTS not only delivers competi-
tive accuracy in a demanding fine-grained classification set-
ting but also significantly enhances computational efficiency.

Computational Cost. In Figure 4, we evaluate TR-PTS
against various PEFT methods in terms of computational ef-
ficiency, with all experiments conducted on a single NVIDIA
A100 GPU under consistent settings. Specifically, all meth-
ods are evaluated using a batch size of 32, input resolution of
224×224, and a ViT-B backbone. FLOPs are measured ana-
lytically, inference time is averaged over 500 forward passes,
and memory usage is recorded after a single pass. TR-PTS
achieves the shortest inference time, primarily due to its task-
relevant token selection mechanism, which removes redun-
dant tokens and accelerates processing. In terms of mem-
ory usage, TR-PTS consumes the least among all methods,
unlike VPT, which introduces additional modules that in-
crease runtime memory requirements. Regarding FLOPs, a
key indicator of computational complexity, TR-PTS reports
the lowest count by dynamically selecting and merging to-
kens, thereby reducing unnecessary operations. By compar-
ison, GPS lacks structured token selection and incurs higher
FLOPs. These results demonstrate that TR-PTS effectively
enhances both token and parameter efficiency, reducing com-
putational cost while preserving strong task performance.

4.3. Ablation Studies
Components Effectiveness. We analyze the contribution
of each component in our framework: Task-Relevant Param-
eter Selection and Task-Relevant Token Selection. Table 4
presents the impact of integrating these components. To en-
sure a comprehensive evaluation, we select one task from
each of the three major VTAB categories and use linear fine-
tuning as the baseline. Introducing TR-PTS significantly im-
proves performance, achieving gains of 75.2%, 2.5%, and
3.5% across datasets. Applying token selection at an optimal
layer, without additional parameter selection or fine-tuning,
yields accuracy improvements of 2.3%, 1.8%, and 0.2%,
respectively. Conversely, parameter selection alone, with-
out token selection, leads to increases of 72.6%, 2.4%, and
3.2%. The combination of both components in TR-PTS con-
sistently enhances model performance. These results high-
light the necessity of selecting both task-relevant tokens and

TR-PTS VTAB-1k

Token Selection Parameter Selecetion dSprites/loc Flower102 Sun397

12.5 97.0 51.0
✓ 14.8 98.8 51.2

✓ 85.1 99.4 54.2
✓ ✓ 87.7 99.5 54.5

Table 4. Ablation Study on the impact of Task-Relevant Token
Selection and Task-Relevant Parameter Selection.

parameters, demonstrating their complementary roles in op-
timizing fine-tuning for diverse downstream tasks.

Analysis of Task-Relevant Parameter Selection. To as-
sess the impact of our task-relevant parameter selection strat-
egy, we analyze the layer-wise distribution of critical param-
eters and the overlap between task-specific parameter sets.
• Layer-Wise Distribution of Critical Parameters: The

parameter distribution across datasets reflects task rele-
vance, varying by dataset needs. As shown in Figure 5,
Flower102 concentrates parameters in Blocks 8 and 10, re-
lying more on high-level feature extraction, while lower
layers contribute less. In contrast, Patch/Camelyon has
a uniform distribution, indicating equal reliance on all
blocks. Sun397, however, is dominated by Block 0, sug-
gesting a greater dependency on low-level features. These
results confirm that task-aware parameter selection is cru-
cial, as different datasets prioritize different layers.

• Overlap Between Task-Specific Parameter Sets: As
shown in Figure 7, similar tasks exhibit greater over-
lap, such as Resisc45 and Smallnorb/Azi (0.38), in-
dicating shared task-relevant parameters. In contrast,
Sun397 shows minimal overlap with Patch/Camelyon
(0.17) and Dsprites/Loc (0.18), suggesting distinct param-
eter selection. Moderate overlap between Dsprites/Loc
and Patch/Camelyon (0.28–0.32) implies partial parameter
sharing while maintaining task specificity. Overall, the low
parameter overlap validates the effectiveness of our adap-
tive selection strategy over uniform allocation.

Explore the Intrinsic Correlation Between Parameter
Density and Token Redundancy. By analyzing token se-
lection and parameter distribution, we observe a strong in-
trinsic correlation between token redundancy and parame-
ter sparsity. In particular, layers with fewer task-relevant
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Figure 6. Visualization of Task-Relevant Tokens Selected by TR-
PTS Using ViT-B/16 with 12 Layers. As the number of layers
increases, our method increasingly focuses on task-relevant tokens.

Figure 7. Visualization of the Overlapping Rate Among Task-
Driven Parameter Sets. This heatmap shows the overlap between
parameter sets across tasks. Darker shades indicate higher similar-
ity, while lighter shades highlight task-specific differences.

parameters tend to encode less informative tokens, making
them better candidates for token reduction. As shown in
Table 5, applying token selection in layers with dense pa-
rameter updates, such as in Flower102 and Camelyon, often
leads to performance drops. This indicates that pruning in
highly task-relevant layers can disrupt essential task-specific
information. Moreover, random token selection across layers
results in inconsistent performance, further emphasizing the
importance of a task-aware strategy. Motivated by this find-
ing, we design a joint selection strategy that applies token
reduction primarily in sparse parameter layers—those with
fewer selected task-relevant connections. This “sparse in-
sertion” method ensures that token selection minimizes in-
terference with critical computation while still reducing re-
dundancy. As a result, TR-PTS achieves a favorable balance
between efficiency and accuracy, outperforming both dense
and random strategies.

Selection Ratio Sun397 Flower102 Loc Camelyon

Dense
0.95 53.5 99.3 85.2 87.3
0.8 52.7 99.1 86.9 87.4

Random
0.95 54.0 99.3 85.9 87.9
0.8 52.5 99.2 85.5 86.1

Sparse
0.95 54.5 99.4 87.7 88.1
0.8 52.9 99.1 86.0 87.2

Table 5. Comparison of Token Selection Positions. “Dense”
refers to layers rich in task-relevant parameters, where pruning may
harm performance. “Sparse” applies selection in layers with fewer
task-relevant parameters, making pruning more effective. “Ran-
dom” selects tokens without a structured strategy.

Token Selection Visualization. To evaluate the effective-
ness of our proposed Task-Relevant Token Selection strategy,
we conduct a Token Selection Visualization experiment us-
ing ViT-B/16 with 12 layers. This experiment is performed
on two fine-grained datasets, CUB-200-2011 and Stanford
Dogs, with a token select rate of 0.8. We visualize the token
selection process at different layers, specifically the 4th, 7th,
and 10th layers, all within a single forward pass of the net-
work. The results show that in the early layers (e.g., Layer
4), token retention is relatively widespread, capturing local
features. In deeper layers (e.g., Layer 10), the model grad-
ually focuses on foreground objects, such as birds in CUB-
200-2011 and dogs in Stanford Dogs, effectively eliminating
background noise. As the network deepens, more tokens are
merged or refined, reducing computational redundancy while
allowing the model to concentrate on the most critical image
regions.

5. Conclusion

This work enhances the efficiency of adapting pre-trained
Vision Transformers (ViT) during fine-tuning and inference.
We propose Task-Relevant Parameter and Token Selection
(TR-PTS), which improves efficiency from two perspectives.
On the parameter side, it leverages the Fisher Information
Matrix (FIM) to fine-tune only the most task-relevant param-
eters, reducing trainable parameters while preserving adap-
tation. On the token side, TR-PTS dynamically selects and
merges tokens based on [CLS] attention scores, retaining
only the most informative ones to reduce redundancy and
lower computational overhead. TR-PTS maintains strong
task performance with reduced cost. Future work will extend
it to segmentation, detection, and adaptive token selection
across Transformer layers to enhance efficiency and general-
ization.
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