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Abstract

Speech-driven methods for portraits are figuratively known
as “Talkers” because of their capability to synthesize
speaking mouth shapes and facial movements. Especially
with the rapid development of the Text-to-Image (T2I) mod-
els, AI-Generated Talking Heads (AGTHs) have gradu-
ally become an emerging digital human media. However,
challenges persist regarding the quality of these talkers
and AGTHs they generate, and comprehensive studies ad-
dressing these issues remain limited. To address this gap,
this paper presents the largest AGTH quality assessment
dataset THQA-10K to date, which selects 12 prominent T2I
models and 14 advanced talkers to generate AGTHs for
14 prompts. After excluding instances where AGTH gen-
eration is unsuccessful, the THQA-10K dataset contains
10,457 AGTHs. Then, volunteers are recruited to subjec-
tively rate the AGTHs and give the corresponding distor-
tion categories. In our analysis for subjective experimental
results, we evaluate the performance of talkers in terms of
generalizability and quality, and also expose the distortions
of existing AGTHs. Finally, an objective quality assess-
ment method based on the first frame, Y-T slice and tone-
lip consistency is proposed. Experimental results show
that this method can achieve state-of-the-art (SOTA) perfor-
mance in AGTH quality assessment. The work is released
at https://github.com/zyj-2000/Talker.

1. Introduction
Digital humans represent an emerging digital media tech-
nology focused on generating realistic representations of
virtual characters endowed with human-like characters [67].
Currently, the majority of high-quality digital humans are
predominantly crafted and manipulated by skilled design-
ers, necessitating extensive expertise and experience. In
particular, the design process is cumbersome and time-
consuming in terms of character modeling and facial an-
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Figure 1. Manual approach to digital human head design versus
Text-to-Image and Talker-based approaches.

imation. This method of manual design obviously suf-
fers from low efficiency and high cost, hindering the pop-
ularization and promotion of digital humans. Fortunately,
advancements in artificial intelligence (AI) have signifi-
cantly facilitated the design of digital humans. On one
hand, various types of text-to-image (T2I) models [1–3, 9–
11, 25, 31, 32, 34, 35] have been able to generate various
types of character images, allowing for a more diverse ap-
pearance of digital humans. On the other hand, a variety
of speech-driven methods [6, 7, 23, 33, 42, 43, 46, 47, 49–
51, 63, 64], which can be viewed as “Talkers,” have been
developed to achieve the effect of Talking Head (TH). Al-
though these talkers have improved the efficiency of digital
human design, they inevitably face a variety of quality prob-
lems, which adversely impact the user experience. There-
fore, it is imperative to evaluate these Talkers to provide
objective and reliable reference metrics for various genera-
tive methods, thereby fostering the ongoing development of
the digital human domain and enhancing user experience
with AI-Generated Talking Head (AGTH) videos. More
specifically, considering the AGTH generation process, two
aspects should be considered to assess the quality of the
talkers. A) Generalization: A better talker should produce
high-quality AGTHs across a wide range of portrait images.

https://github.com/zyj-2000/Talker


Table 1. The comparison of digital human databases and THQA-10K.
Database Modal Scale Methods Distortions Description

DHH-QA [55] Mesh + UV 1,540 Zhang et al. [55], Zhou et al. [69] 7 model distortions Scanned Real Human Heads
DDHQA [54] Mesh + UV 800 Zhang et al. [56], Chen et al. [5] 7 model distortions and 2 motion distortions Dynamic 3D Digital Human

SJTU-H3D [53] Mesh + UV 1,120 Zhang et al. [53] 7 model distortions Static 3D Digital Humans
6G-DTQA [60] Mesh + UV 400 Zhang et al. [60] 3 model distortions and 2 stream media issues Dynamic 3D Digital Human
THQA-3D [73] Mesh + UV 1,000 Zhou et al. [73] 5 stream media issues Scanned Real Human Heads
CDHQA [77] Video 254 None 3 generative distortions Interactive Digital Human
THQA [72] Video + Audio 800 None 9 generative distortions AI-Generated Talking Heads
AHQA [78] Video 1200 Zhou et al. [78] 4 generative distortions Animated Humans

ReLI-QA [75] Image 840 None 4 relighted methods Relighted Human Heads
MEMO-Bench [71] Image 7,145 None Sentimental Error Emotional Human Heads
THQA-10K (Ours) Image + Audio 10,457 None 10 generative distortions AI-Generated Talking Heads

B) Quality: A better talker must generate superior AGTHs
for identical images and speech inputs.

Unfortunately, there has been limited research address-
ing these quality concerns and proposing credible solu-
tions. To tackle this challenge, this paper first introduces
the largest and most comprehensive AGTH Quality Assess-
ment dataset named THQA-10K. This dataset encompasses
a diverse selection of character materials, considering vari-
ous ages and genders, and includes 14 prompts for character
image generation. Each prompt is paired with five tailored
speech sentences serving as driving audio. Furthermore,
the dataset employs 12 leading T2I models and 14 talkers
to generate AGTHs, resulting in a total of 10,457 instances
within THQA-10K. Subsequently, volunteers are recruited
to conduct subjective evaluations of the AGTHs, focusing
on both distortion categories and visual quality scores. The
findings reveal 10 distinct types of distortions among the
AGTHs, alongside significant variations in quality depend-
ing on the talkers utilized. This highlights the critical need
for quality assessments in this field. Leveraging the THQA-
10K dataset and subjective ratings, we propose FSCD, an
objective quality assessment method for AGTH based on
the first frame, Y-T Slice [38] and tone-lip consistency. Ex-
perimental results validate the efficacy and superiority of
this method, offering reliable objective metrics for the con-
tinued advancement of AGTH technologies. The principal
contributions of this paper are as follows:

• The THQA-10K dataset, comprising 10,457 AGTHs, has
been constructed. To our knowledge, this dataset rep-
resents the largest collection created for the purpose of
AGTH quality assessment, incorporating 12 prominent
T2I models and 14 speech-driven methods.

• An objective quality assessment algorithm, referred to as
FSCD, has been designed. This method integrates qual-
ity features from the first frame, Y-T slice, and tone-lip
consistency to deliver an effective and robust objective
evaluation of AGTH quality.

• The proposed THQA-10K dataset is representative and
comprehensive to advance the field of digital human de-
sign. The designed FSCD method can achieve state-of-
the-art (SOTA) objective quality assessment performance,
which provides a reliable quality indicator for the field.

2. Related Works
2.1. Talker: Talking Head Driven Methods
Head-driven animation has been a significant area of re-
search within the field of computer animation, primarily
because the human head encompasses a wealth of facial de-
tails, expressive movements, and identity information. Tra-
ditional methods typically utilize computer-aided animation
software, such as Maya1 or Blender2. These approaches
require the binding of facial bones to the character model
and the establishment of corresponding controllers to ma-
nipulate facial movements. Subsequently, keyframe anima-
tion techniques are employed, where appropriate keyframes
are set for each controller to create various mouth shapes
corresponding to different phonemes. This process is no-
tably time-consuming and often necessitates extensive de-
bugging. To address these challenges, the current standard
solution in film and television production involves the use of
facial capture sensors that track the key points of real THs
[12, 21, 24, 37]. The captured data is then imported into
computer-aided animation software for further refinement
and design. However, high-precision facial capture sensors
are prohibitively expensive.

In recent years, advancements in AI have opened new
avenues for the production of THs. The emergence of
T2I models has not only simplified character image de-
sign but has also introduced speech-driven methodologies
that directly apply speech to face images for AGTH gener-
ation. This approach alleviates a series of cumbersome pro-
cesses and reduces equipment costs significantly. Speech-
driven methods can be further classified into image-based
[6, 13, 23, 43, 43, 49] and video-based [7, 33, 42, 46, 47,
50, 51, 63] techniques, depending on the input modality.
Nonetheless, the absence of human design and oversight
raises concerns regarding the quality of AGTHs, which is
the central focus of this paper.

2.2. Digital Human Quality Assessment
With the development of digital human quality assessment
of digital humans has become an emerging research compo-
nent. As shown in Table 1, many relevant datasets and ob-

1https://www.autodesk.com/products/maya/
2https://www.blender.org/



(a) (b) (c)
Figure 2. Features of selected prompts and speeches. (a) Word cloud of selected prompts. (b) Word cloud of the speech text content. (c)
Results of the resonance peak estimation for the selected speech. Speech samples that show resonance peak merging have been removed.

jective quality assessment methods have been established,
providing a rich data base and feasible solutions for the de-
velopment of digital human quality assessment. Nonethe-
less, attention to AGTH is still lacking, with only Zhou et
al. constructing a THQA dataset [72], which also fails to
provide an effective quality assessment metric. Actually,
PSNR and SSIM [44] are still two commonly used qual-
ity metrics in the field of THs. However, it is clear that
these two metrics are no longer suitable for the evaluation of
AGTHs, due to the lack of corresponding reference videos.
Although metrics such as Frechet Inception Distance (FID)
[14], LSE-C [8], LES-D [8], and CPBD [30] have also been
used in the domain of THs, these metrics only focus on a
certain dimension of AGTH and do not provide a compre-
hensive and effective assessment of AGTH. Therefore, there
is an urgent need for effective objective indicators to mea-
sure the quality of AGTH in the field of AGTH. In Zhou
et al.’s experiments [72], they identified 9 common distor-
tions present in AGTHs. However, the limitations of the
THQA dataset are apparent. First, it consists of only 800
AGTHs, which constrains its ability to encompass AGTHs
generated by a variety of contemporary models. Second,
the exclusive reliance on StyleGAN [15, 16] for character
image generation neglects the potential influence of current
mainstream T2I models on quality. These constraints hin-
der the development of effective methods for objectively as-
sessing AGTH quality. To address these deficiencies, this
paper introduces a larger and more comprehensive THQA-
10K dataset. Utilizing the THQA-10K dataset, we conduct
extensive subjective experiments and design targeted objec-
tive quality assessment methods, thereby providing reliable
reference metrics for AGTH quality evaluation.

3. Database Construction

3.1. Prompts and Speeches

To ensure diversity and representativeness among persons
and to account for potential variations in AGTHs due to dif-
ferences in gender and age, we select 14 distinct prompts
for character portrait generation, each assigned a unique
prompt ID (PID). Fig. 2(a) displays the frequency and con-
tent of these prompts, all of which are set to “8k” quality to

maximize the resolution and detail of the generated char-
acters. Additionally, photographic elements are incorpo-
rated into some prompts to enhance realism. Overall, these
prompts offer a comprehensive description of various hu-
man head features.

Aligned with the age and gender associated with each
prompt, we select five corresponding speeches from the
Common Voice speech dataset3. Each set of five speeches
is sourced from the same speaker, ensuring consistent
phonological features across the selected speeches for each
prompt. To illustrate the diversity in speech content and
features, we perform speech recognition and feature extrac-
tion on the selected audio samples, with results presented
in Fig. 2(b-c). Several observations can be made from
Fig. 2(b-c): 1) The speeches encompass a broad vocabu-
lary, predominantly comprising common words, suggesting
a rich variety of phonemes; 2) The first formant frequency
of most speeches falls between 600 and 1150 Hz, indicating
diverse mouth shapes during articulation. The second for-
mant frequency ranges between 1750 and 4000 Hz, reflect-
ing differences in tongue positioning during pronunciation;
3) For each PID, the five selected speech samples display
clustering in their audio features, while the samples from
different PIDs are more widely separated, indicating con-
sistency within each PID; 4) Audio durations range from
3.06 to 10.12 seconds, providing a balanced representation
of short interactions and longer conversations.

3.2. Generative Models
To generate AGTHs from prompts, two types of generative
models are required. The first, text-to-image (T2I) mod-
els, are designed to produce portraits based on the pro-
vided prompts, serving as the foundational material for
subsequent facial animation. Although previous research
[19, 58, 61] has highlighted variations in the quality of im-
ages produced by different T2I models, there has been lim-
ited targeted discussion addressing the quality of generated
portraits. To comprehensively evaluate the generalization
performance of talkers and to investigate the impact of dif-
ferences in the quality of generated portraits on AGTHs,
we select 12 prominent T2I models for image generation.

3https://commonvoice.mozilla.org



Table 2. Details of T2I models employed for generation.
Type Label T2I Model Year Output Resolution

Closed source
DL3 Dalle3 [3] 2023 1,024×1,024
MJ6 MidjourneyV6 [25] 2023 1,024×1,024
IDG Ideagram [1] 2024 1,024×1,024

Open source

SD2 Stable Diffusion 2.1 [35] 2022 512×512
SD1 Stable Diffusion 1.5 [35] 2022 512×512
SDX Stable Diffusion XL [32] 2023 1,024×1,024
FCS Fooocus [11] 2023 1,024×1,024
KDS Kandinsky [2] 2023 1,024×1,024
ODE OpenDalleV1.1 [31] 2023 1,024×1,024
PTS Proteus [34] 2024 1,024×1,024
FLU FLUX.1 [10] 2024 1,024×1,024
SD3 Stable Diffusion 3 [9] 2024 1,024×1,024

PID: #1

Age: Child

Gender: Male

T2I: Midjourney

Please help me create 
portraits: <PID>.

Ok. Here are some 
portraits created on 
request.

T2I Artistic Designer

PID: #2

Age: Child

Gender: Female

T2I: IdeaGram

PID: #3

Age: Child

Gender: Male

T2I: Fooocus

PID: #4

Age: Young

Gender: Female

T2I: Proteus

PID: #5

Age: Young

Gender: Male

T2I: Kandinsky

PID: #6

Age: Young

Gender: Female

T2I: SDXL

PID: #7

Age: Young

Gender: Female

T2I: SD3

PID: #8

Age: Middle

Gender: Male

T2I: SD2.1

PID: #9

Age: Middle

Gender: Male

T2I: OpenDalle

PID: #10

Age: Middle

Gender: Female

T2I: FLUX.1

PID: #11

Age: Old

Gender: Male

T2I: Dalle3

PID: #12

Age: Old

Gender: Female

T2I: SD1.5

PID: #13

Age: Old

Gender: Male

T2I: Proteus

PID: #14

Age: Old

Gender: Female

T2I: Kandinsky

Figure 3. Generated portraits of different PIDs.

Details regarding the selected T2I models are presented in
Table 2, with a subset of the generated portraits illustrated
in Fig. 3.

Another critical generative model is represented by
speech-driven methods, commonly referred as talkers. To
ensure that the constructed dataset encompasses a wide
range of existing mainstream driving methods, 14 talkers
are utilized to target the generated character images for
AGTH generation. Table 3 provides details of the selected
talkers, including their respective output resolutions. It is
important to note that variations in output resolution exist
and the selected driving methods are totally implemented
using source code provided by the original authors. Ad-
ditionally, for the video-based driving methods, the input
video consists of a repeated driving image with a duration
set to one second and a frame rate of 25 frames per second.
Ultimately, a total of 10,457 AGTHs are successfully gen-
erated for 14 prompts and their corresponding 70 speeches,
culminating in the creation of the THQA-10K dataset.

3.3. Data Statistics and Subjective Experiment

To assess the generalization capability of various T2I mod-
els and talkers, we conduct a statistical analysis of the num-
ber of portraits and AGTHs successfully generated by these
generative models, as illustrated in Fig. 4. From Fig. 4(a), it
is evident that the two T2I models, SD1 and SD2, demon-
strate limited effectiveness in generating portraits across a
range of prompts. However, for IDG, its’ suboptimal perfor-
mance can be attributed to the constraints posed by prompt-
sensitive vocabulary. Additionally, Fig. 4(b) highlights the

Table 3. Details of talkers employed for generation.
Type Label Methods Year Head Motion Output Resolution

Image-based

MI MakeIttalk [64] 2020 ✓ 256×256
AH Auido2Head [43] 2021 ✓ 256×256
ST Sadtalker [49] 2023 ✓ 512×512
DT Dreamtalk [23] 2023 ✓ 256×256
ET EAT [13] 2023 ✓ 256×256
EM EchoMimic [6] 2024 ✓ 512×512

Video-based

WL Wav2Lip [33] 2020 ✕ 1,024×1,024
VR Video-Retalking [7] 2022 ✕ 1,024×1,024
SH StyleHeat [47] 2022 ✕ 1,024×1,024
DN DINet [51] 2023 ✕ 1,024×1,024
IL IP-LAP [63] 2023 ✕ 1,024×1,024
TL TalkLip [42] 2023 ✕ 1,024×1,024
MT MuseTalk [50] 2024 ✕ 1,024×1,024
EG EmoGen [46] 2024 ✕ 1,024×1,024
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Figure 4. Visualization of the number of successful generation.
(a) Portraits that can be successfully generated. The black block
indicates success while the white one indicates failure. (b) Number
of AGTHs that can be successfully generated.

generalization performance of different talkers. Notably,
the SH and TL talkers exhibit the strongest generalization
abilities. Remarkably, the disparity in the total number of
AGTHs generated between the highest and lowest perform-
ing talkers reaches 128, underscoring a significant variation
in generalization performance across the different talkers.

To investigate the quality of AGTHs and their distortions
in detail, we recruit 13 male and 12 female participants to
conduct subjective quality assessments of all AGTHs in the
THQA-10K dataset. The subjective evaluation is carried
out in a well-controlled laboratory in accordance with the
guidelines outlined in ITU-R BT.500-13 [4]. Participants
can view AGTHs on an iMac monitor with a resolution of
4,096 × 2,304. Given that the AGTHs include audio com-
ponents, a wired headset is utilized to ensure low-latency
and high-quality audio transmission, while also minimizing
potential interference between participants due to the audio
output. The AGTHs are organized into 100 phases, with
each phase comprising at most 120 AGTHs. To mitigate vi-
sual fatigue and discomfort associated with prolonged view-
ing, all participants are required to take a 15-minute break
after completing each phase. Furthermore, each participant
is limited to a maximum of 6 assessment phases per day.

3.4. Data Processing
At the end of the subjective experiment, we receive a total of
261,425 = 25 × 10,457 subjective ratings. Each rating can
be described as {sij , Dij}, where sij and Dij are the qual-
ity rating and labeled distortion of the j-th AGTH by the
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Figure 5. Distribution of MOSs.

i-th subject. In particular, Dij is a ten-dimensional 0-1 dis-
tortion vector, with each dimension denoting a correspond-
ing distortion type. According to existing works [26, 53–
55, 59, 62, 65, 66, 68, 70, 74–76], sij is processed as z-
scores according to the following equation:

zij =
sij − µi

σi
, (1)

where µi =
1
Ni

∑Ni

j=1 sij , σi =
√

1
Ni−1

∑Ni

j=1 (sij − µi),
and Ni represents the total number of AGTHs evaluated by
subject i. Following the rejection procedure outlined in [4],
ratings from unreliable subjects are excluded. The remain-
ing z-scores zij are linearly rescaled to the range [0, 5]. Fi-
nally, the mean opinion scores (MOSs) for the j-th AGTH
are computed by averaging the rescaled z-scores. For the
distortion vector Dij , the summation operation is employed
to count the distortion type of the j-th AGTH:

Dj =

Nj∑
i=1

Dij , (2)

where Nj denotes the number of subjects who classified dis-
tortions of the j-th AGTH. A threshold vector Tj , defined
as Nj/2 across all ten dimensions, is utilized to derive the
final distortions Dj :

Dj = u(Dj − Tj), (3)

where u(·) denotes the step function. The whole process
can be interpreted as for each category of distortion for each
AGTH, more than half of the subjects need to believe that
the distortion exists before it is officially acknowledged.

3.5. Mean Opinion Score Analysis
Based on the results of the subjective experiments, we
conduct a comprehensive analysis of mean opinion scores
(MOSs) and distortion of AGTHs in order to evaluate the
various types of talkers. Initially, the overall MOS distri-
bution is plotted as shown in Fig. 5(a). To further ana-
lyze the effects of various possible factors on the MOSs,

the violin plots shown in Fig. 5(b-d) provide a more in-
tuitive picture of the relationship between different PIDs,
T2Is, talkers and MOSs. By observing Fig. 5, we can draw
some valuable conclusions: 1) The majority of AGTHs
received quality scores centered around 3, indicating that
some talkers are capable of meeting user expectations re-
garding audiovisual quality. However, it is noteworthy that
only a limited number of AGTHs achieved MOSs exceeding
4 points, while a significant proportion of AGTHs received
low-quality scores in the range of 0 to 2 points. This sug-
gests considerable potential for improving the audiovisual
quality produced by talkers; 2) AGTHs generated from dif-
ferent PIDs and T2Is exhibit a similar distribution of MOSs.
This observation indicates that the PIDs and T2Is utilized
in constructing the THQA-10K dataset are both represen-
tative and universal, thereby facilitating generalization to
other PIDs and T2Is. Additionally, it implies that variations
in PIDs and T2Is are not the primary determinants affecting
the quality of AGTHs; 3) There are significant disparities
in the quality distribution of AGTHs produced by different
talkers. Notably, two types of talkers, EM and ST, generate
the highest quality AGTHs, whereas two other types, EG
and SH, yield lower quality outputs.

3.6. Distortion Visualization & Analysis

An examination of the AGTHs in the THQA-10K dataset
reveals that the 9 distortion types previously identified in
the THQA dataset by Zhou et al. [72] remain prevalent.
Additionally, new distortions have emerged, predominantly
characterized by misalignment of facial keypoints. To illus-
trate the impact of each distortion type and quantify their
occurrence, we select representative samples for visualiza-
tion and cataloged the distortions identified in the subjective
assessments. The results are depicted in Fig. 6. From this
analysis, several key insights can be derived: 1) A total of
17,191 distortions are identified across 10,457 AGTHs, in-
dicating that distortions are a common issue within existing
AGTHs. Notably, individual AGTHs often exhibit a com-
bination of multiple distortion types; 2) Among the various
distortion types, blur (BL), noise (NI) and artifacts (AF) re-
main the predominant issues, suggesting that current talkers
still face limitations in these areas; 3) The use of Y-T slices
to represent the two distortion types, little lip motion (LLM)
and muscle twitch (MT), as demonstrated by Zhou et al.,
offers a more pronounced indication of the visual effects as-
sociated with these distortions. Specifically, LLM manifests
as parallel lines or minor fluctuations in the mouth texture
within the Y-T slice, while MT is characterized by periodic
repetitive textures. The newly identified misaligned key-
points (MK) distortion results in a noticeable displacement
of facial features, leading to severe distortion.

To further investigate the frequency of various distortion
types across different talkers, we plot a heatmap to visu-
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Figure 7. Statistical analysis of different distortions.

ally illustrate the relationship between talkers and distor-
tions. The data presented in Fig. 7(a) reveal another two
key findings: 1) Specific distortions tend to be concentrated
among one or a few talkers. For instance, LLM predomi-
nantly occurs with the IL talker, while distortion from dis-
torted background (DB) is mainly observed with the ET
talker, and MK is frequently associated with the SH and
EG talkers; 2) Among all talkers included in the compar-
ison, ST and EM exhibit the least frequency of distortion,
highlighting their superiority and explaining why these two
methods achieve the highest MOSs. Finally, in conjunction
with the MOS analysis method of Sec. 3.5, the effect of
each type of distortion on the MOSs is plotted as Fig. 7(b).
The results indicate that different distortion types have vary-
ing effects on human audiovisual perception. Notably, the
three most common distortions do not significantly detract
from the overall quality of AGTHs, and in some cases, they
still yield high MOSs. Conversely, MK has the most pro-
nounced negative impact on AGTH quality, primarily due
to the intolerable displacement of facial features, resulting
in significant distortion.

4. Proposed Method

4.1. First Frame & Slice Process

Considering that each AGTH video is generated by a sta-
tionary talker, it is reasonable to assert that the video qual-

ity remains relatively stable throughout the duration of the
AGTH. Consequently, the initial frame of an AGTH pro-
vides a rich set of spatial features suitable for quality as-
sessment. In terms of temporal feature selection, this paper
proposes a slice-based temporal feature extraction scheme,
as illustrated in Fig. 8. Firstly, we advocate for the use of
Y-T slices over X-T slices, as Y-T slices capture more com-
prehensive facial information due to the inherent symmetry
of the face. Additionally, to ensure that the tangent line in-
tersects the mouth, which is a critical aspect of AGTHs, we
utilize the image generated by the T2I model as a reference
and apply landmark detection to identify the key points pk
of the mouth within the generated image. Subsequently, we
compute the coordinates of the mouth’s centroid Co:

Co =
1

K

∑K

k=1
pk, (4)

where K denotes the total number of key points on the face.
However, this derived center point cannot be directly em-
ployed to guide the slicing of corresponding AGTHs, as the
videos produced by different talkers exhibit varying reso-
lutions Rv . Therefore, a scale transformation is applied to
determine the location of the mouth centroid in the AGTH
videos:

Cv =
Rv

Ro
Co, (5)

where Ro is the resolution of the generated portrait and Cv

denotes the center of the human face in AGTHs. Following
this, the entire AGTH video can be projected as a Y-T slice
within the three-dimensional space defined by XY-T coordi-
nates. Ultimately, the Y-T slice is resized to match the reso-
lution of the first frame, facilitating subsequent processing.
This entire slicing process underscores that the Y-T slice ef-
fectively captures temporal features over the video duration,
in contrast to conventional frame extraction methods.
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Figure 8. The proposed framework for FSCD. The method mainly consists of four compartmentalized modules: the Y-T slice process,
tone-lip consistency detection, backbone feature extraction, and quality regression.

4.2. Tone-lip Consistency Detection

AGTH is a media that exhibits a high sensitivity to audio-
visual synchronization, particularly in relation to the syn-
chronization between lip movements and speech. To ad-
dress this sensitivity, we initially perform a cropping of the
mouth region in the AGTH and extracted Mel-frequency
cepstral coefficients (MFCCs) from the accompanying au-
dio. Subsequently, we employ the classical SyncNet [8]
to assess audio-lip consistency, yielding two key outputs:
lip sync error confidence (LSE-C) and distance (LSE-D).
In contrast to existing methodologies that integrate these
two features directly into the final quality regression layer,
this study proposes an innovative approach whereby the two
LSE features are expanded into a tensor of dimensions cor-
responding to those of the first frame. This tensor is then
utilized as two additional images within the first frame, en-
abling the backbone network to learn the relative signifi-
cance of tonal lip consistency autonomously, rather than re-
lying on predetermined weights based on prior knowledge.

4.3. Backbone & Quality Regression

The obtained First frame, Y-T Slice, LSE-C, and LSE-D can
be collectively viewed as a new image called FSCD. Given
the excellent performance achieved by the swin-transformer
(Swin-T) [22, 52, 57, 79] in several computer vision tasks,
Swin-T is used to extract quality features from FSCDs. Dur-
ing the training phase, the predicted audiovisual quality is
compared with the actual MOS using the Mean Squared Er-
ror (MSE) as the loss function, facilitating the gradual opti-
mization of the algorithm for enhanced performance:

Loss =
1

n

n∑
l=1

(Q̂l −Ql)
2
, (6)

where Q̂l and Ql represent the predicted quality and MOS
of lth AGTH, and n indicates the size of training batch.

5. Experiments
5.1. Experiment Details & Criteria
To validate the effectiveness of the proposed method, we se-
lect 15 quality assessment algorithms applicable to AGTHs
for comparison. This selection includes 4 classical im-
age quality assessment (IQA) methods, 2 methods for au-
dio and lip consistency, and 9 video quality assessment
(VQA) methods. Among these, RAPIQUE, SimpVQA,
VSFA, FAST-VQA, and BVQA are deep learning-based
methods, while the remaining methods rely on manually ex-
tracted features. All selected methods are tested on THQA-
10K, THQA [72] and THQA-3D [73] datasets, utilizing a
five-fold cross-validation scheme. The average test results
from the five folds are recorded as the performance of each
method. Notably, the five-fold data partitioning ensures that
there is no content overlap, and all algorithms employed are
derived from the source code provided by their authors.

In terms of evaluation criteria, we adopt four commonly
used metrics for assessing the performance of objective
multimedia quality assessment algorithms: Spearman Rank
Correlation Coefficient (SRCC), Kendall’s Rank Correla-
tion Coefficient (KRCC), Pearson Linear Correlation Co-
efficient (PLCC), and Root Mean Squared Error (RMSE).

5.2. Performance Analysis
The performance of the proposed FSCD method, along with
other competing methods, on three datasets is presented in
Table 4. An analysis of this table yields several key con-
clusions: 1) FSCD demonstrates optimal performance on
all datasets, surpassing the next best algorithm by +2% in
SRCC at least. This result strongly supports the effective-
ness of the proposed FSCD method for assessing AGTH
quality; 2) The methods that achieve suboptimal perfor-
mance differ among three datasets. In contrast, FSCD con-
sistently achieves optimal performance across all datasets,
highlighting the robustness and generalizability of the pro-
posed method; 3) Existing IQA methods, single audio-lip



Table 4. Performance results on the proposed THQA-10K, THQA and THQA-3D databases. Best in RED, second in BLUE.

Type Models THQA-10K THQA THQA-3D
SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓

IQA

BRISQUE [27] 0.4271 0.4451 0.2993 1.0262 0.4856 0.5970 0.3454 0.8227 0.6749 0.7453 0.5060 0.5717
NIQE [28] 0.0089 0.0436 0.0051 1.1492 0.0535 0.1643 0.0402 0.9811 0.2243 0.4741 0.1232 0.7707
CPBD [30] 0.0553 0.0686 0.0371 1.1476 0.0575 0.0876 0.0376 0.9908 0.2145 0.3136 0.1432 0.8273
IL-NIQE [48] 0.0490 0.0634 0.0286 1.1480 0.0537 0.2160 0.0276 0.9712 0.2293 0.4871 0.1537 0.7600

Sync LSE-C [8] 0.0706 0.1634 0.0468 1.1349 0.0056 0.2109 0.0048 0.9723 0.1728 0.2297 0.1355 0.8499
LSE-D [8] 0.0580 0.1123 0.0385 1.1431 0.1366 0.2336 0.0855 0.9671 0.0079 0.1054 0.0008 0.8684

VQA

VIIDEO [29] 0.1354 0.1782 0.0901 1.1319 0.1777 0.1891 0.1354 0.9595 0.1056 0.2308 0.0721 0.8387
TLVQM [17] 0.4377 0.4679 0.3070 1.0130 0.0254 0.0355 0.0209 1.0853 0.1887 0.3112 0.1272 0.8240
VIDEVAL [40] 0.3869 0.4147 0.2706 1.0431 0.0317 0.0358 0.0231 1.1916 0.2252 0.3544 0.1556 0.8118
V-BLIINDS [36] 0.4740 0.4977 0.3334 0.9941 0.4949 0.6403 0.3533 0.7976 0.5298 0.6412 0.3907 0.6674
RAPIQUE [41] 0.3576 0.3846 0.2490 1.0579 0.1789 0.1908 0.1277 1.0162 0.3748 0.4680 0.2660 0.7643
SimpVQA [39] 0.7775 0.8039 0.5931 0.6832 0.6800 0.7592 0.5052 0.6361 0.6321 0.7258 0.4717 0.5983
VSFA [20] 0.7537 0.7754 0.5726 0.7343 0.7601 0.8106 0.5830 0.5966 0.7463 0.7811 0.5596 0.5726
FAST-VQA [45] 0.7351 0.7542 0.5519 0.8026 0.6389 0.7441 0.4677 0.6983 0.7778 0.7984 0.5964 0.5503
BVQA [18] 0.6335 0.7405 0.4522 0.7634 0.7287 0.7985 0.5549 0.6094 0.7871 0.8298 0.6081 0.5983

FSCD (Ours) 0.8066 0.8322 0.6228 0.6333 0.7812 0.8409 0.5951 0.5055 0.8235 0.8505 0.6463 0.4577

Table 5. Ablation study results on databases, where ‘w/o’ stands for ‘without’. Best in RED, second in BLUE.

Dimension THQA-10K THQA THQA-3D
SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓

w/o F 0.6510 0.6892 0.4726 0.8497 0.6830 0.7506 0.5035 0.5765 0.7368 0.7844 0.5451 0.5468
w/o S 0.7330 0.7672 0.5509 0.7329 0.7205 0.7968 0.5325 0.5272 0.7506 0.7730 0.5655 0.5593
w/o C 0.7927 0.8169 0.6049 0.6764 0.7660 0.8174 0.5860 0.5086 0.8019 0.8429 0.6160 0.4658
w/o D 0.7610 0.7879 0.5744 0.7221 0.7462 0.8110 0.5579 0.5105 0.7915 0.8359 0.6037 0.4710
FSCD 0.8066 0.8322 0.6228 0.6333 0.7812 0.8409 0.5951 0.5055 0.8235 0.8505 0.6463 0.4577

consistency detection techniques, and VQA methods are
constrained in their ability to evaluate AGTH quality. This
limitation primarily arises from the inability of these meth-
ods to fully leverage the spatio-temporal features and mul-
timodal information inherent in AGTHs. Moreover, com-
pared to the extraction of temporal features through the Y-T
slice, conventional approaches often struggle to adequately
account for the relationships among frames.

5.3. Ablation Experiments
To further evaluate the effectiveness of each component
within the FSCD framework, ablation experiments are con-
ducted, with results summarized in Table 5, from which
following observations can be drawn: 1) Each component
of FSCD contributes positively to the overall performance.
This enhancement can be attributed to the fact that the four
components address different quality aspects, allowing for
a synergistic effect; 2) Regarding the importance of indi-
vidual components, the quality characteristics provided by
the first frame rank highest, followed by the Y-T Slice,
LSE-D, and LSE-C. This suggests that spatial features are
paramount in influencing the quality of AGTHs, with tem-
poral features and coherence features following in impor-
tance; 3) A comparative analysis of the performance results
presented in Tables 4 and 5 reveals a noteworthy finding:
even when utilizing only the Y-T Slice and the tone and
lip coherence features, without the first frame, competitive
performance is still achievable on three datasets. This high-
lights the validity and significance of the Y-T slice as em-

ployed by FSCD in the assessment of AGTH quality.

6. Conclusion
As digital human technology continues to advance, vari-
ous speech-driven methods, commonly referred as “Talk-
ers,” have emerged to enhance the efficiency of digital hu-
man face design. To thoroughly investigate the generaliza-
tion performance and generation quality of different talk-
ers, this study introduces the THQA-10K dataset, compris-
ing a total of 10,457 AI-Generated Talking Head (AGTH)
videos. Specifically, 12 Text-to-Image (T2I) methods are
employed to generate character portraits, while 14 advanced
talkers are utilized to produce AGTHs. Through compre-
hensive data analysis and subjective experiments conducted
on the THQA-10K dataset, we validate both the comprehen-
siveness and generalizability of the dataset. Additionally,
we assess the generalization performance of existing talk-
ers and identify potential quality issues and their distribu-
tions. Finally, we propose an objective quality assessment
method named FSCD, leveraging the first frame, Y-T slice,
and tone-lip consistency. Experimental results substantiate
the effectiveness and robustness of FSCD, which is antici-
pated to inform the ongoing development of talkers.
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