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Abstract—Video frame interpolation (VFI) synthesizes new
frames from original video frames to produce high frame-
rate videos and enhance their visual appeal. The quality of
these interpolated frames significantly affects the perceptual
experience of the synthesized video. Recent research in VFI has
increasingly focused on perceptual quality of the interpolated
frames and the overall video. However, most existing quality
metrics do not align well with human perceptual experiences
and often suffer from unnatural artifacts in the interpolated
frames. Consequently, there is an urgent need for VFI video
quality assessment (VFIVQA) methods to assess the quality of the
synthesized videos. In this paper, we propose both a full-reference
(FR) method and a no-reference (NR) method for VFIVQA. The
FR method employs two feature extraction blocks to measure
continuous frame changes, extracting flow features with short
temporal spans and motion features with long temporal spans.
By calculating multilevel similarities in the temporal dimension
of 3D convolutional neural networks and fusing these similarity
features, the quality score of the VFI video is obtained from
the quality regression network. Since the flow feature extraction
block does not utilize the reference VFI video, the proposed NR
method consists solely of this feature block. Extensive validation
on several VFIVQA datasets demonstrates that the proposed
methods outperform state-of-the-art FR and NR methods.

Index Terms—Video frame interpolation, video quality assess-
ment, perceptual quality, video incoherence.

I. INTRODUCTION

V IDEO has become the primary medium for information
communication in modern times, and a large number

of videos are available on the Internet. However, due to
bandwidth constraints, the frame rate of videos has not seen
significant improvements. Fortunately, video frame interpola-
tion (VFI) techniques [1]–[3], which synthesize new frames
between the original video frames, can enhance the frame rate
or smooth motion [4], [5] for low frame rate (LFR) videos,
thereby alleviating bandwidth demands.

In recent years, novel VFI techniques have been proposed
to generate videos with higher perceptual quality [6]–[8].
This development raises a new challenge: existing image and
video quality assessment (IQA/VQA) methods may not be
suitable for VFI videos [9], [10]. On the one hand, due to
the persistence of vision, observers are particularly sensitive
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to frame continuity when watching videos. In other words,
it is not only the quality of individual frames but also the
coherence of multiple frames that affects the human viewing
experience. Current IQA methods severely overlook the co-
herence of video frames and the temporal changes of objects,
making them unsuitable for the task of VFI video quality
assessment (VFIVQA) [10]–[12]. On the other hand, most
VQA methods are specifically designed for videos affected by
typical distortions, such as compression and blur. However,
during the VFI synthesis process, the inherent uncertainty
often introduces distortions throughout the video, combining
high-level content distortions with low-level texture distortions
[9]. Despite their impact on the perceptual quality of the video,
VQA studies focusing on these perceptual distortions have
received limited attention.

Research on perceptual VQA is typically divided into two
categories: subjective and objective studies [13]–[17]. Several
subjective VQA datasets have been constructed. To investigate
specific perceptual effects, distortions within the datasets are
synthesized on a set of original videos. In subjective VFIVQA
studies [18], videos synthesized by different VFI methods are
evaluated by subjects who are instructed to assess the overall
quality of the VFI videos. However, there are still very few
subjective VQA studies that specifically address the issue of
frame incoherence in the VFI videos.

While subjective studies in VQA are generally accurate,
they are also time-consuming and laborious. Consequently,
objective studies have become the primary research focus.
With the development of VQA towards perceptual consistency,
objective studies rely on quality assessment scores provided
by subjective evaluation experiments. Among objective VQA
methods, full-reference (FR) and no-reference (NR) methods
are categorized based on whether or not the original video is
used as a reference [19]–[22]. Specifically for VFIVQA, the
methods proposed by Danier et al. [11] and Hou et al. [10]
draw on the concept of perceptual distance from the distortion
to the reference [23] to predict quality scores. These are FR
methods, that require the original HFR video as a reference.
Although FR VQA methods usually have better perceptual
consistency due to the additional information, obtaining the
original HFR video is still a challenge in VFIVQA. This limits
the application scenarios of FR methods.

Accordingly, in this paper, we propose not only a FR method
(VFIVQA-FR) but also a NR method to predict the quality of
VFI videos (VFIVQA-NR). Both methods are designed within
the same VQA framework, utilizing an end-to-end neural
network architecture that involves video feature extraction and
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quality regression. For VFIVQA-FR, two types of feature ex-
traction blocks, namely the flow feature block and the motion
feature block, are designed to learn the quality from frames
of VFI videos. These two blocks extract features from frames
with short and long temporal spans, respectively. For short
temporal spans, three consecutive frames in the VFI video are
considered as a triplet, and flow features are extracted from
the triplet using 3D convolutional neural networks (CNNs).
For long spans, motion features are extracted from key frames
in the VFI video and the corresponding reference frames using
pre-trained video networks. The final perceptual quality scores
of the VFI video are obtained through the fusion of these two
types of features and the learning of feature-quality mappings.
For VFIVQA-NR, as motion features require reference frames,
only the flow feature extraction block is included along with
the quality regression network.

The performances of VFIVQA-FR and VFIVQA-NR are
extensively verified on the BVI-VFI [24], VFIPS [10], and
VFIIQA datasets [9], and compared with state-of-the-art
(SOTA) FR and NR IQA/VQA methods. Experimental results
demonstrate that VFIVQA-FR and VFIVQA-NR are superior
to SOTA methods. Additionally, validation and ablation studies
are conducted to evaluate the effectiveness of each component
of the proposed methods. The main contributions of this work
are as follows:

• Two novel methods, VFIVQA-FR and VFIVQA-NR, are
proposed for FR and NR VFIVQA, respectively. Espe-
cially, the NR method is the first NR VQA specifically
designed for VFI videos.

• VFIVQA-FR and VFIVQA-NR consider two important
factors in human video perception: the continuity of the
video over short periods and the memory effect over
long periods. Meanwhile, the two proposed methods also
introduce two types of features to obtain quality scores.

• A novel flow feature extraction block is proposed based
on the context of frame triplets, applicable to both FR
and NR VFIVQA.

• Quantitative comparison of IQA/VQA methods and
cross-validation experiments are performed on VFIVQA
datasets, and the proposed methods outperform SOTA
methods.

The rest of the paper is organized as follows. Section II
reviews related works on VQA methods. Section III intro-
duces the proposed VFIVQA models. Section IV provides the
experimental results and discusses the performance. Finally,
concluding remarks are given in Section V.

II. RELATED WORKS

This section reviews previous works on FR and NR VQA,
and summarizes subjective and objective VQA methods related
to VFI.

A. Video Quality Assessment

1) FR VQA: FR VQA methods assess video quality by
comparing the distorted video with the reference video, typ-
ically achieving high accuracy [25]. The most commonly

used methods are PSNR and SSIM [26]. These two meth-
ods compute the Euclidean distance and structural similarity,
respectively, between the distorted and reference videos at
each frame. They then average the frame scores to obtain an
overall quality score. Combining temporal information with
IQA metrics, VMAF [27] extracts multiple IQA and motion
features, and employs support vector regression (SVR) to map
these features to video quality. With the increase in comput-
ing resources, VQA models based on deep neural networks
have emerged, demonstrating exceptional performance owing
to their powerful learning capabilities. The CVQA-FR [28]
method calculates structural similarity and texture similarity
on multi-level feature maps generated from multiple frames.
C3DVQA [29] introduces 3D CNNs to learn spatio-temporal
features by combining 2D CNNs for VQA.

2) NR VQA: NR VQA methods take only the distorted
video as input, making them more widely applicable in
practical scenarios [19]–[21], [30]. Earlier NR VQA methods
compute the quality of each frame using NR IQA tech-
niques [31], and then consider the average of all frame
scores as the final score. More recent methods draw upon
the spatial information acquisition strategies from advanced
IQA methods [32]–[38]. However, IQA overlooks important
temporal features. TLVQM [39] improves regression accuracy
by extracting rich spatio-temporal features at two levels for
training SVR models. VIDEVAL [40] enhances classic NR
VQA methods by regressing features to video quality. How-
ever, these handcrafted features are limited in their ability
to perceive video content. Currently, many methods utilize
deep features and feedforward neural networks to learn the
relationship between videos and quality scores [28], [41]–
[44]. VSFA [41] extracts features using a pre-trained ResNet
backbone and employs a gated recurrent unit (GRU) network
as a temporal quality regressor. CVQA-NR [28] enhances the
feature extraction capability with a unique ladder structure
and regresses quality scores through fully connected layers.
SimpleVQA [42] incorporates SlowFast features to integrate
temporal information, improving quality prediction accuracy.
FAST-VQA [43] samples videos using an efficient fragment
sampling block with attention networks and achieves the best
VQA accuracy for general videos.

B. Subjective VFIVQA

The existing subjective VFIVQA datasets include BVI-VFI,
VFIPS, and VFIIQA. The detailed specifications of the three
datasets are listed in Table I. In addition, some sample frames
in the datasets with different types of visual distortions are
shown in Fig. 1.

1) BVI-VFI: The first subjective VFIVQA study is the BVI-
VFI [24]. In the subjective experiments, the scores of VFI
videos are annotated using the double stimulus continuous
quality scale methodology [45], and the Differential Mean
Opinion Score (DMOS) values are computed for each video.
The BVI-VFI dataset contains 540 VFI videos generated
from 36 source videos, with various spatial resolutions and
frame rates. Based on the types of VFI algorithms, distortions
can be categorized into two main types: Traditional (Trad)
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(a) (b) (c)

Fig. 1. Sample frames from the video contents contained in the VFI quality assessment datasets: (a) BVI-VFI (b) VFIPS (c) VFIIQA. GT stands for Ground
Truth. Trad and LB refer to the two kinds of distortions (traditional and learning-based) in BVI-VFI and VFIIQA. VFIPS contains LB distortions, represented
as pairs of videos.

TABLE I
VIDEO QUALITY ASSESSMENT DATASETS FOR VIDEO FRAME

INTERPOLATION.

Item
Dataset

BVI-VFI VFIPS VFIIQA

Count 36 500 56
Total 540 5948 488

Resolution 540p, 1080p, 2160p 256×256 1280×720
Framerate 30, 60, 120fps 2fps -

Length 5s 12 frames 3 frames
Format MP4 Patch PNG

Distortion Trad, LB LB Trad, LB
Ground-truth DMOS 2AFC score MOS

and Learning-based (LB). The Trad distortions include those
generated by averaging and repeating algorithms, while the
LB distortions [46]–[49] stem from DVF, QVI, and STMFNet
[50]–[52]. Fig. 1(a) illustrates the two types of visual distor-
tions. The Trad distortions are primarily involve single-frame
ghosting and reduced sharpness, while the LB distortions
manifest as unstable object structures and the appearance of
artifacts. All of these factors significantly impact the percep-
tual quality of VFI.

2) VFIPS: The VFIPS [10] dataset is a large-scale
VFIVQA dataset. It focuses on perceptual similarity and
consists of thousands of cropped video patches extracted
from 12-frame VFI video clips. The subjective scores are
annotated using the Two-Alternative Forced Choice (2AFC)
[23] experiment. Accordingly, in the subjective experiments,
two VFI videos are presented with the reference video, and
then the subjects are required to choose the better video.
Although automatic annotation is also conducted to expand
the dataset, the data annotated by subjects includes 5978
sequences generated from 500 source videos. Only LB dis-
tortions are contained in the dataset.

3) VFIIQA: Given that not only the overall quality of
videos but also the quality of individual frames significantly

impacts the perception of VFI videos, the VFIIQA [9] dataset
was constructed in our earlier work to study VFIVQA. The
subjective experiments in VFIIQA were specifically designed
to evaluate the synthesized frames in VFI videos. Two consec-
utive frames adjacent to each frame under evaluation were ex-
tracted to form a triplet of frames. The triplets were observed,
and the scores for the synthesized frames were annotated by
subjects. The data annotation methodology used is the single
stimulus continuous quality rating and the Mean Opinion
Score (MOS) values were calculated. Eight academic VFI
algorithms with LB distortions and one industrial algorithm
with Trad distortions were employed to extensively study the
perceptual impact of single frames.

C. Objective VFIVQA
The basic metrics for assessing visual quality in VFI al-

gorithm research [2] are PSNR and SSIM. However, these
metrics do not consistently align with human subjective per-
ception of VFI videos [12]. Although some algorithms have
introduced LPIPS [23] as the evaluation criterion to pursue
high-quality VFI, these metrics overlook motion information
in the temporal dimension, resulting in limited perceptual
accuracy. Taking into account temporal information, more
recent objective VFIVQA methods are learning-based VQA
methods. FloLPIPS [11] integrates the optical flow [53], [54]
features between frames into the perceptual metric. It is
trained and validated on the BVI-VFI dataset, confirming the
effectiveness of temporal information for the perception of
VFI videos. VFIPS [10] incorporates attention mechanisms
into the LPIPS through a transformer architecture and uses a
continuous sequence of frames as input to capture inter-frame
motion information. Both of these methods are FR methods,
and their effectiveness for single-frame quality perception in
VFI videos has not been validated.

III. PROPOSED METHOD

This section provides a detailed introduction to the proposed
VFIVQA methods. The frameworks of the proposed VFIVQA-
FR and VFIVQA-NR methods are illustrated in Fig. 2 and
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Fig. 2. Overall architecture of the proposed VFIVQA-FR method. The distorted inputs are the VFI videos generated from the LFR videos and the references are
the corresponding HFR videos. Solid arrows represent the data flow, and dotted arrows indicate the frame extraction process. The solid line boxes encompass
the feature extraction block and the quality regression block, and the dotted line boxes illustrate the similarity calculation.

Fig. 3, respectively. Both methods employ an end-to-end VQA
architecture that contains feature extraction blocks and quality
regression blocks.

A. Feature Extraction

In the VFIVQA-FR method, video features of both VFI
videos and reference videos are extracted, as shown in Fig. 2.
The frames synthesized by VFI methods are denoted by xt,
while the original frames in both the LFR video and the HFR
video are represented by yt. Features representing short-term
continuity are extracted from the flow feature extraction block,
while features representing long-term semantics are extracted
from the motion feature extraction block.

1) Flow Feature Extraction: Given that VFI involves in-
terpolating two frames in the time dimension to synthesize
a new frame, continuous playback often results in unnatural
motion or deformation of objects in the synthesized frame
compared to the original frames [10]. Moreover, the human
visual system assesses video quality based on the smoothness
between consecutive frames [9]. Although optical flows are
computed from consecutive input frames and can represent the
smoothness of objects and scenes [54]–[56], the computation
is expensive, and the feature scale is singular [11]. Therefore,
a novel extraction block is designed to extract multi-scale
flow features and perceive inter-frame smoothness within
short temporal spans. Similar to the VFI process, a triplet
of frames, comprising one synthesized frame and the two
adjacent original frames from VFI videos, is input into the
flow feature block.

In the process of feature extraction, a multi-layer neural
network architecture is introduced as the backbone to extract
multi-scale features. Considering that the ResNet3D archi-
tecture [57], [58] has been demonstrated to be effective in
learning spatio-temporal information, the flow features in our
method are learned from continuous frames by the feature
layers of ResNet3D. Specifically, the backbone is composed
of multiple layers of cascaded 3D CNNs. To facilitate the

TABLE II
PARAMETERS OF THE FEATURE MAPS IN RESNET3D.

Layer name Chanel (C) Size (l × h× w)

conv1 64 L×H ×W

conv2 64 L×H ×W

conv3 128 [L/2]×H/2×W/2

conv4 256 [L/4]×H/4×W/4

conv5 512 [L/8]×H/8×W/8

learning of desired features with fewer parameters, skip con-
nections are incorporated. For the feature map fk of the k-th
residual block, the skip connection can be represented by:

fk = fk−1 + F (fk−1; θk), (1)

where F (fk−1; θk) represents the function of convolutions
parameterized by weights θk, and the activation function of
rectified linear unit (ReLU).

The entire feature learning process in the networks is
divided into five stages based on the size of the feature maps,
with the corresponding networks labeled conv1 to conv5 in
Fig. 2. As the feature extraction stage progresses, the temporal
dimension of the feature maps decreases due to the action of
3D CNNs. As a result, information across the temporal scale
of video frames is gradually integrated into the feature maps.
Specifically, the output sizes C× l×h×w of the feature maps
for each stage of the network are provided in Table II, where
C is the number of channels and l is the temporal size of the
convolution. L, H and W refer to the size of output feature
maps at conv1.

Learning the temporal continuity for each triplet of frames,
the network can utilize the flow features as the primary
basis for quality assessment. With the extraction backbone
handling temporal dimension feature, the flow feature vector is
calculated with the proposed ConTextual Similarity (CTS) to
represent frame coherence within a short temporal span. The
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CTS calculation is integrated into the feature maps, which will
be described in detail in Section III-B.

2) Motion Feature Extraction: Given that objects within
the video may not always exhibit consistent motion, the
perception of the video is a complex process [42]. The effects
of distortion in VFI videos depend not only on individual
frames but also on multiple frames with long time spans.
Consequently, a motion feature extraction block is proposed to
assist VFIVQA-FR in conducting comprehensive evaluations.
For motion features of video content, models pre-trained
on a large number of videos have sufficient representation
abilities. The pre-trained ResNet3D is commonly used for
video feature extraction, especially in applications such as
video recognition and action recognition. In VQA methods,
the effectiveness of using pre-trained models for video feature
extraction has been proven [41], [43]. Following the principles,
motion features are extracted using the pre-trained ResNet3D,
with the network parameters frozen. Inheriting the stability
and comprehensiveness of the human visual system, the pre-
trained model can perceive videos over long time spans.

The motion feature block simultaneously takes the gener-
ated VFI video and the corresponding HFR video as inputs for
FR VFIVQA. For each video clip under evaluation, the key
frames, which are usually the frames synthesized from the VFI
video, are selected as the distorted input. The corresponding
frames from the HFR video serve as the reference input.
Motion features are extracted from both the distorted and
reference frames to obtain comparable feature maps with
multi-scale representations. Since the feature maps output by
ResNet3D gradually integrate information from multiple key
frames in the temporal dimension, a spatio-temporal similarity
calculation is proposed in Section III-B to better quantify the
feature maps as vectors in the block.

B. Similarity Computation

1) Context Similarity: In the proposed flow feature extrac-
tion block, feature maps of the triplet frames are obtained,
covering multiple scales in both the temporal and spatial
dimensions. To enable the 3D CNNs to learn smoothness
features between consecutive frames, a CTS computation of
the feature map is designed in this section. Considering the
primary form of perceptual loss between VFI frames and
original frames, the CTS introduces structural similarity by
focusing on the global correlations of feature maps at each
stage:

Sk(f
t
k, f

t+1
k ) =

σ
t(t+1)
k + c

(σt
k)

2
+ (σt+1

k )
2
+ c

, (2)

where f t
k and f t+1

k represent two adjacent feature components
in the time dimension for the k-th stage feature map, with
t = 1, . . . , l − 1. The (σt

k)
2 and (σt+1

k )
2

refer to the global
variances of f t

k and f t+1
k , while σ

t(t+1)
k represents the global

covariance between f t
k and f t+1

k , and c is a constant avoiding
numerical singularity. The CTS aims to calculate similarity

in temporal dimension from the overall feature representation.
Accordingly, the CTS in the k-th stage CTSk is:

CTSk =

l−1∏
t=1

Sk(f
t
k, f

t+1
k ). (3)

Since the input designed in the extraction block is a triplet,
l ≤ 3. Specifically, the size of the feature map is reduced
stage by stage in the time dimension as shown in Table II. To
provide a clearer explanation, the calculation of the CTS for
different values of l is shown in the dotted box in Fig. 2. When
l is 1, the temporal information across feature maps is fully
integrated by the networks. Consequently, the global average
pooling (GAP) is introduced to generate high-level features.
Finally, by incorporating multi-scale features, all vectors are
connected into the flow feature vF :

vF = concat({CTSk}5k=1). (4)

2) Spatio-temporal Similarity: Although motion features
are typically treated as high-level features in VQA methods,
they may result in the loss of motion information at the pixel
level [28]. Given that distortions in VFI videos can affect
both pixel-level and semantic-level features, spatio-temporal
similarity (STS) is designed at each stage in the motion
feature extraction block. STS relies on a reference-distortion
comparison strategy, computing the structural similarity across
multiple key frames and the corresponding reference. The
STSk at the k-th stage is defined as:

STSk =
1

l

l∑
t=1

Sk(f
t
k(x), f

t
k(y)), (5)

where x and y represent the distorted and reference video clips,
and l is the temporal size of the feature maps. Integrating over
temporal scales, the motion feature vector is:

vM = concat({STSk}5k=1). (6)

C. Feature Fusion and Quality Regression

Feature fusion and regression to quality scores play a pivotal
role in the subjective consistency and generalizability of VQA
methods. It has been demonstrated that feature fusion can
significantly impact the performance of features [44]. The most
commonly used feature fusion method in VQA is the con-
catenation of feature vectors, although there are also methods
that directly sum similarity measures [28]. In this paper, as
indicated in Eq. (4) and Eq. (6), the concatenation operation
is employed, which allows for maximum information retention
within the features. Depending on the exceptional performance
of the quality regression network in high-dimensional spaces,
the fused features can be accurately mapped to quality scores.
The feature vectors obtained from the two parts of the feature
extraction blocks are concatenated as shown in Fig. 2, denoted
as v = vF ⊕ vM , where ⊕ stands for the concatenation
operation.

The subsequent quality regression network follows a consis-
tent design principle in VQA, employing a mapping network
composed of two cascaded fully connected layers. This design
ensures a sufficiently high-dimensional representation of the
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Fig. 3. The architecture of the proposed VFIVQA-NR method. The inputs
are the distorted VFI videos and only the flow feature extraction block is
included to obtain the contextual similarity.

extracted feature vectors and adapts to the trends in subjective
scores. The activation functions are ReLU and Sigmoid, as
shown in Fig. 2. ReLU mitigates the interdependence between
neurons, thereby alleviating overfitting, and Sigmoid accom-
plishes the final score mapping.

D. No-reference Framework

As mentioned in Section III-A, the designed flow feature
extraction block takes a triplet of frames from the VFI video as
input. Due to the absence of the reference video, the extraction
block can be independently designed for NR VFIVQA. The
proposed VFIVQA-NR framework, depicted in Fig. 3, extracts
features at multiple scales from the input triplet frames and
computes the CTS. After concatenating all flow feature vectors
into a vector, denoted as vF , it serves as the input to the quality
regression network, to obtain the final score. The experimental
validation demonstrates the simplicity and effectiveness of the
proposed NR framework, making it suitable for addressing NR
VFIVQA problems.

IV. EXPERIMENTS

In this section, the experimental settings are first introduced,
which include datasets, experimental details, SOTA IQA/VQA
methods used for comparison, and the evaluation metrics.
Then, experiments are presented to demonstrate the effec-
tiveness and superiority of the proposed method. In addition,
statistical significance analysis and ablation studies validate the
importance of individual modules. The generalization abilities
of the methods are also verified through cross-database evalu-
ation. Finally, we evaluate the computational efficiency of our
methods.

A. Experimental Settings

1) Datasets: Following the tradition [40], all three relevant
datasets introduced in Section II-B are used separately for
training and validation. Given the differences in data format
and distribution, separate validation ensures the fairness of the
experiments and enables a comprehensive evaluation of the
methods across different perceptions. Each dataset is divided
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Fig. 4. Comparison between the BVI-VFI and VFIIQA datasets. The first row
shows the histograms and the fitted kernel distributions of the two datasets.
The second row shows the distribution comparisons of all opinion scores
between VFI algorithms. The third row is the distribution of SI and TI in the
paired feature space with the corresponding convex hulls.

into non-overlapping training and test sets, with an 80%-
20% split. To prevent information leakage between training
and testing, the random split is based on the reference video
content. Videos with different distortion types but from the
same reference video are assigned to the same set.

Furthermore, since the BVI-VFI dataset [24] comprises
subsets with varying spatial resolutions and frame rates, the
partition ratios across different subsets are kept consistent.
For the VFIPS dataset [10], in pursuit of higher perceptual
quality accuracy, only the manually annotated portions are
utilized. Compared to the two datasets, the VFIIQA dataset [9]
focuses more on the quality of single frames. A comparison
between the VFIIQA and BVI-VFI datasets is illustrated in
Fig. 4, where both datasets include quality scores as ground
truths. Histograms of data with fitted kernel distribution curves
and probability distributions of raw scores for various VFI
methods are also given in this figure. From the histograms,
it can be observed that the VFIIQA exhibits a symmetric
distribution with BVI-VFI, which is attributed to differences
in the annotation methodology. This is because the VFIIQA
employs MOSs as annotations, whereas the BVI-VFI dataset
is annotated with DMOSs. Regarding the distributions of
distortions from various VFI algorithms in both datasets,
VFIIQA shows a greater variety of distortions in the low-
quality range, serving as a valuable supplement to the types of
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VFI distortions. The Spatial perceptual Information (SI) and
the Temporal perceptual Information (TI) [59] for each video
in both datasets are also depicted in Fig. 4. In the SI and
TI feature spaces, the BVI-VFI contains more spatio-temporal
information, while VFIIQA provides less information, posing
a greater challenge for VQA methods.

2) Implementation Details: Both VFIVQA-FR and
VFIVQA-NR are trained end-to-end on the datasets and
the motion feature extraction backbone in VFIVQA-FR is
pre-trained on the Kinetics-400 dataset [60]. The model
parameters are optimized by the ADAM optimizer with an
initial learning rate of 10−4, which is reduced by a factor of
2 after every 50 iterations. For the dataset where the score is
MOS, the training loss is the Mean Square Error (MSE) loss,
which is a common choice for the quality regression tasks:

MSE =
1

N

N∑
n=1

(Qn − Q̂n)
2, (7)

where N is the number of scores, Qn and Q̂n are the ground-
truth quality score and the estimated score, respectively.

Limited by the size of the datasets, a 5-fold cross-validation
process is employed for evaluating performance on the BVI-
VFI and VFIIQA datasets in accordance with the data par-
titioning principles described in Section IV-A1. The process
is iterated 10 times, during which performance metrics are
computed, and the average of all results is reported for the
final assessment. During training, the spatial resolution of each
video is downsampled to 256×256. For the BVI-VFI dataset,
the key-frame selection process follows a fixed time interval
method, where one frame is selected for each second of the
video. In contrast, for the other two datasets (VFIIQA and
VFIPS), all frames are included without subsampling. For the
VFIPS dataset, which involves subjective 2AFC scores, the
output scores of each pair of videos are used as estimates
for comparison, and the loss function used is Binary Cross
Entropy (BCE). These data processing and training procedures
are consistent across all comparison methods.

3) Compared Methods: The VQA methods specifically de-
signed for VFI are FloLPIPS [11] and VFIPS [10]. Following
their practices, the SOTA IQA/VQA methods are compared to
validate the superiority of the proposed methods. For FR meth-
ods, commonly adopted IQA methods include PSNR, SSIM,
LPIPS [23], and DISTS [61]. FR VQA methods compared
include VMAF [27], CVQA-FR [28], and C3DVQA [29]. Fur-
thermore, specific evaluation metrics for VFI like Interpolation
Error (IE) and Normalized Interpolation Error (NIE) [53] as
Eq.(8) and Eq.(9) are also compared:

IE = [
1

M

∑
(x,y)

(I(x, y)− IGT (x, y))
2]

1
2 , (8)

NIE = [
1

M

∑
(x,y)

(I(x, y)− IGT (x, y))
2

∥∇IGT (x, y)∥2 + 1
]
1
2 , (9)

where I and IGT are the distorted image and the ground-truth
image respectively, (x, y) is the coordinate of the pixel and M
is the number of pixels. Although IE and NIE are not IQA or
VQA methods, these two metrics are included as FR methods

for using ground-truth image information. the evaluation of
NR methods, the IQA methods compared are BRISQUE [31],
DBCNN [33], MANIQA [62], and VFIPQA [9]. The VQA
methods performing well in user-generated videos include
TLVQM [39], VIDEVAL [40], VSFA [41], CVQA-NR [28],
SimpleVQA [42], FAST-VQA [43], and Q-Align [63].

Comparison methods and their associated parameters are
sourced from official code repositories and are maintained
at their default settings. For trainable methods, fine-tuning
is performed on the respective datasets to achieve the best
performance. It should be noted that not all methods are
applicable to all test datasets, and reasonable adaptations are
made to ensure fairness in evaluation. The loss function of
the VFIPS method is adjusted to MSE due to the absence of
2AFC scores in the BVI-VFI and VFIIQA datasets. Moreover,
as the VFIIQA dataset is presented in a format of triplets,
the configurations of the input and the VFIPS network are
adjusted from 12 frames to 3 frames. To accommodate VQA,
IQA methods tested in the BVI-VFI take one frame per
second and compute the average score, while for the other
two datasets, scores for all frames are averaged for evaluation.
These adjustments and adaptations are made to ensure that all
the methods are comparable with the VFIVQA methods in
each dataset, thus facilitating a fair evaluation.

4) Evaluation Criteria: Four commonly used perfor-
mance criteria: Spearman Rank Order Correlation Coeffi-
cient (SROCC), Kendall Rank-Order Correlation Coefficient
(KROCC), Pearson Linear Correlation Coefficient (PLCC),
and Root Mean Square Error (RMSE) are employed as
evaluation metrics [64]. The correlation coefficients are used
to assess the consistency between the predicted scores with
subjective perceptions, and the RMSE is used to evaluate the
fitting error. When calculating PLCC and RMSE, the five-
parameter logistic function [65] is used to non-linearly map
the objective score to the subjective score:

Q′ = β1(
1

2
− 1

1 + expβ2(Q−β3)
) + β4Q+ β5, (10)

where Q and Q′ are the predicted and fitted quality scores,
and {βi, i = 1, . . . , 5} are the parameters determined by the
curve fitting.

As a supplementary metric evaluation, the receiver operating
characteristic (ROC) analysis has also been introduced [66].
The ROC analysis is based on the principle of assessing
whether there are qualitative differences between two videos
and is used to evaluate from two aspects. First, all possible
pairs of videos are compared and categorized into those
with significant quality differences and those without such
differences. The ROC analysis is then employed to determine
whether various objective metrics can distinguish between
videos with significant differences and those without, referred
to as “Different/Similar ROC analysis”. Subsequently, videos
with significant differences are divided into positive difference
and negative difference video pairs, and ROC analysis is
used to assess whether objective metrics can differentiate
between these positive and negative difference videos, denoted
as “Better/Worse ROC analysis”. Area under the ROC curve
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TABLE III
PERFORMANCE COMPARISON BETWEEN FR VQA METHODS AND THE PROPOSED METHOD. PERFORMANCE EVALUATION METRICS COMMONLY USED IN

VFI RESEARCH ARE REPRESENTED IN GRAY. THE BEST MODEL IN EACH COLUMN IS IN BOLD, AND THE SECOND-BEST MODEL IS UNDERLINED.

Methods
BVI-VFI VFIPS VFIIQA

SROCC ↑ KROCC ↑ PLCC ↑ RMSE ↓ 2AFC ↑ SROCC ↑ KROCC ↑ PLCC ↑ RMSE ↓

PSNR 0.587 (.097) 0.409 (.074) 0.578 (.106) 11.019 (0.934) 0.795 0.131 (.155) 0.085 (.107) 0.310 (.087) 16.738 (1.100)

SSIM [26] 0.582 (.123) 0.412 (.094) 0.580 (.100) 11.019 (0.947) 0.813 0.259 (.174) 0.182 (.121) 0.350 (.131) 16.367 (1.226)

LPIPS [23] 0.700 (.079) 0.511 (.071) 0.695 (.096) 9.651 (1.339) 0.858 0.714 (.064) 0.522 (.055) 0.725 (.063) 12.542 (2.095)

DISTS [61] 0.603 (.093) 0.430 (.071) 0.573 (.110) 11.046 (1.034) 0.820 0.755 (.050) 0.562 (.045) 0.781 (.052) 10.895 (0.744)

VMAF [27] 0.527 (.094) 0.368 (.074) 0.524 (.104) 11.514 (0.896) 0.836 0.281 (.146) 0.198 (.105) 0.369 (.119) 16.241 (1.241)

CVQA-FR [28] 0.708 (.101) 0.513 (.088) 0.722 (.096) 9.356 (1.476) 0.822 0.790 (.042) 0.595 (.041) 0.786 (.058) 10.818 (1.772)

C3DVQA [29] 0.677 (.114) 0.489 (.092) 0.610 (.130) 12.016 (1.450) 0.788 0.474 (.126) 0.330 (.095) 0.455 (.110) 17.301 (2.492)

IE [53] 0.561 (.094) 0.389 (.069) 0.515 (.085) 11.657 (0.964) 0.795 0.130 (.155) 0.085 (.107) 0.281 (.107) 16.816 (0.996)

NIE [53] 0.597 (.104) 0.425 (.075) 0.554 (.093) 11.286 (0.808) 0.807 0.375 (.147) 0.258 (.103) 0.430 (.127) 15.698 (0.784)

FloLPIPS [11] 0.733 (.083) 0.536 (.081) 0.725 (.094) 9.199 (1.622) 0.869 0.724 (.073) 0.530 (.065) 0.738 (.083) 11.686 (1.392)

VFIPS [10] 0.743 (.091) 0.553 (.084) 0.691 (.124) 11.020 (1.684) 0.866 0.667 (.080) 0.480 (.068) 0.650 (.063) 14.574 (2.156)

VFIVQA-FR 0.828 (.056) 0.634 (.040) 0.839 (.057) 7.295 (1.123) 0.871 0.823 (.041) 0.638 (.041) 0.833 (.050) 9.582 (1.381)
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Fig. 5. Scatter plots of VQA metrics on the BVI-VFI dataset. The lines are the nonlinear fitted curves with a five-parameter logistic function. Different
distortion types are represented by different scatter points.

(AUC) values are primarily reported for these two types of
analysis, with higher values indicating better performance.

B. Overall Results

1) Quantitative Comparison: The quantitative experimental
results on three datasets are presented in Table III and Ta-
ble IV. The numbers in parentheses are the standard deviations
of 10 times of cross-validation. The upper half of Table III
includes the general IQA/VQA methods, and the lower half
includes the methods specifically designed for VFI quality
assessment. As shown in both tables, the proposed methods
outperform the SOTA methods in both FR and NR VFIVQA.

Among the FR methods, the proposed VFIVQA-FR method
outperforms SOTA methods across all four evaluation metrics.

The performance of VFIPS is relatively close to FloLPIPS on
the BVI-VFI dataset, and consistently lower than VFIVQA-FR
across various metrics. VFIVQA-FR exhibits an improvement
of more than 10% compared to these two methods. Addition-
ally, the standard deviation of correlation coefficients indicates
that the proposed method is the most stable during cross-
validation. On the VFIPS and VFIIQA datasets, VFIVQA-FR
also achieves optimal performance on their respective metrics.
Notably, on the VFIIQA dataset, some general-purpose full-
reference methods perform better than the specialized meth-
ods, which may be due to differences in perception tasks.
The VFIVQA-FR overcomes this issue, providing improved
performance and robustness.

The proposed VFIVQA-NR method also stands out as com-
pared to all SOTA NR methods. Although there is a decrease in
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TABLE IV
PERFORMANCE COMPARISON BETWEEN NR VQA METHODS AND THE PROPOSED METHOD. THE BEST MODEL IN EACH COLUMN IS IN BOLD, AND THE

SECOND-BEST MODEL IS UNDERLINED.

Methods
BVI-VFI VFIPS VFIIQA

SROCC ↑ KROCC ↑ PLCC ↑ RMSE ↓ 2AFC ↑ SROCC ↑ KROCC ↑ PLCC ↑ RMSE ↓

BRISQUE [31] 0.185 (.071) 0.131 (.048) 0.280 (.078) 13.455 (0.772) 0.794 0.481 (.211) 0.349 (.149) 0.492 (.171) 15.310 (1.681)

DBCNN [33] 0.686 (.054) 0.503 (.046) 0.738 (.068) 9.041 (1.124) 0.799 0.792 (.045) 0.607 (.043) 0.806 (.051) 10.156 (1.183)

MANIQA [62] 0.692 (.041) 0.512 (.040) 0.753 (.054) 8.902 (1.064) 0.787 0.707 (.075) 0.517 (.067) 0.694 (.088) 12.525 (1.403)

VFIPQA [9] 0.531 (.082) 0.371 (.058) 0.580 (.076) 11.077 (0.736) 0.842 0.825 (.047) 0.642 (.043) 0.820 (.052) 9.928 (1.214)

TLVQM [39] 0.446 (.080) 0.316 (.064) 0.474 (.104) 11.939 (1.058) 0.807 0.536 (.079) 0.376 (.057) 0.578 (.097) 14.233 (1.121)

VIDEVAL [40] 0.120 (.093) 0.086 (.064) 0.236 (.078) 13.308 (0.689) 0.814 0.504 (.091) 0.350 (.067) 0.528 (.074) 14.583 (1.249)

Q-Align [63] 0.534 (.109) 0.348 (.075) 0.548 (.075) 12.500 (0.780) 0.714 0.593 (.084) 0.428 (.062) 0.624 (.099) 13.597 (1.283)

VSFA [41] 0.552 (.093) 0.386 (.072) 0.588 (.096) 10.939 (1.182) 0.811 0.633 (.100) 0.453 (.083) 0.637 (.125) 13.272 (1.582)

CVQA-NR [28] 0.608 (.089) 0.442 (.071) 0.681 (.084) 14.516 (4.480) 0.825 0.776 (.114) 0.588 (.092) 0.721 (.230) 16.458 (5.631)

SimpleVQA [42] 0.750 (.057) 0.555 (.056) 0.778 (.049) 8.507 (0.766) 0.834 0.640 (.123) 0.457 (.096) 0.657 (.087) 13.155 (1.707)

FAST-VQA [43] 0.744 (.076) 0.552 (.073) 0.783 (.080) 8.329 (1.437) 0.821 0.734 (.129) 0.549 (.115) 0.722 (.146) 12.734 (3.054)

VFIVQA-NR 0.810 (.047) 0.626 (.042) 0.838 (.049) 7.506 (0.962) 0.858 0.821 (.041) 0.635 (.042) 0.835 (.042) 9.555 (1.164)
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Fig. 6. Scatter plots of VQA metrics on the VFIIQA dataset. The lines are the nonlinear fitted curves with a five-parameter logistic function. Different
distortion types are represented by different scatter points.

consistency compared to FR methods, it still outperforms other
NR VQA methods. Compared to the second-best method,
VFIVQA-NR shows an improvement of approximately 7% on
the BVI-VFI dataset. Furthermore, the proposed method is the
first NR VQA method designed specifically for VFI videos,
achieving high consistency with human perception across all
three datasets, which is advantageous for the direct deployment
of VFIVQA applications.

2) Qualitative Comparison: In order to provide a more
intuitive representation of the consistency between objective
predictions and subjective perceptual qualities, scatter plots
and logistic function fitting results of the test outcomes have
been presented. Scatter plots for the BVI-VFI and VFIIQA
datasets are shown in Fig. 5 and Fig. 6, respectively. Each
figure consists of two rows, presenting the results of rep-

resentative FR methods and NR methods, respectively. In
addition to the proposed methods, the three methods with the
highest SRCC are selected for comparison. The scatter plots
indicate that the proposed FR and NR methods exhibit better
linearity on the two datasets compared to other methods, which
implies a better consistency with MOS. Furthermore, through
annotations of different distortion types, the proposed method
also demonstrates good discrimination ability for videos with
the same distortion type.

C. Performance on Different Subsets
The BVI-VFI dataset comprises videos with varying spatial

resolutions and frame rates, thus this dataset can be divided
into different subsets for further validation and analysis. An-
alyzing the differences in video quality perception from the
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TABLE V
PERFORMANCE COMPARISON ON DIFFERENT SUBSETS OF BVI-VFI WITH DIFFERENT RESOLUTIONS.

Methods 540p 1080p 2160p 30fps 60fps 120fps
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

PSNR 0.681 0.683 0.605 0.683 0.595 0.622 0.543 0.611 0.563 0.581 0.389 0.572
SSIM [26] 0.657 0.638 0.658 0.651 0.668 0.699 0.533 0.668 0.585 0.588 0.417 0.502

IE [53] 0.697 0.697 0.593 0.642 0.480 0.500 0.519 0.574 0.557 0.533 0.334 0.465
NIE [53] 0.703 0.714 0.646 0.678 0.589 0.580 0.427 0.522 0.602 0.579 0.419 0.579

LPIPS [23] 0.751 0.788 0.718 0.766 0.724 0.737 0.577 0.668 0.713 0.717 0.585 0.716
DISTS [61] 0.697 0.702 0.673 0.723 0.639 0.657 0.490 0.604 0.621 0.607 0.435 0.636
VMAF [27] 0.650 0.627 0.569 0.639 0.408 0.579 0.451 0.511 0.549 0.518 0.402 0.553

CVQA-FR [28] 0.714 0.787 0.676 0.788 0.600 0.728 0.616 0.666 0.718 0.763 0.554 0.804
FloLPIPS [11] 0.793 0.816 0.736 0.762 0.718 0.745 0.718 0.745 0.762 0.758 0.573 0.714

VFIPS [10] 0.758 0.859 0.788 0.886 0.728 0.795 0.626 0.751 0.680 0.744 0.587 0.774
VFIVQA-FR 0.847 0.876 0.830 0.894 0.806 0.848 0.796 0.804 0.802 0.864 0.693 0.913

BRISQUE [31] 0.117 0.284 0.237 0.399 0.265 0.474 0.229 0.343 0.184 0.323 0.026 0.236
DBCNN [33] 0.717 0.754 0.677 0.854 0.699 0.755 0.674 0.684 0.747 0.765 0.566 0.830

MANIQA [62] 0.706 0.723 0.687 0.827 0.767 0.816 0.656 0.697 0.753 0.808 0.598 0.855
VFIPQA [9] 0.475 0.616 0.645 0.781 0.585 0.639 0.442 0.544 0.490 0.613 0.309 0.724
TLVQM [39] 0.576 0.654 0.497 0.638 0.460 0.557 0.383 0.472 0.428 0.510 0.337 0.544

VIDEVAL [40] 0.087 0.353 0.447 0.577 0.180 0.319 0.216 0.379 0.079 0.228 0.046 0.216
CVQA-NR [28] 0.640 0.713 0.642 0.843 0.635 0.733 0.626 0.669 0.653 0.751 0.427 0.776
SimpleVQA [42] 0.743 0.766 0.820 0.907 0.712 0.754 0.685 0.715 0.762 0.810 0.649 0.871
FAST-VQA [43] 0.720 0.827 0.770 0.827 0.765 0.818 0.734 0.758 0.726 0.792 0.523 0.798

VFIVQA-NR 0.855 0.893 0.790 0.870 0.853 0.888 0.796 0.814 0.823 0.892 0.653 0.929

perspectives of spatial resolution and frame rate allows for a
more comprehensive assessment of VFI algorithms and further
validates the generalizability of VFIVQA methods.

1) Resolution Subsets: Based on the spatial resolution of
videos in the BVI-VFI dataset, it is divided into three sub-
datasets with resolutions of 540p, 1080p, and 2160p, respec-
tively. Each of these three subsets comprises 180 videos.
During the training process, a cross-validation method is
consistently employed. The dataset is split into training and
test sets for each of the three subsets, and this process is
iterated 10 times to obtain average results. The experimental
results are presented in the left part of Table V. From the table,
it is evident that among FR methods, VFIVQA-FR achieves
the best performance in all three subsets of different resolu-
tions. This indicates that the proposed method has a strong
generalization ability across various spatial resolutions. In the
case of NR methods, VFIVQA-NR performs optimally on the
540p and 2160p subsets. On the 1080p subset, the performance
of the proposed method is second only to SimpleVQA, which
might be attributed to the specific capabilities of SimpleVQA
for this particular resolution.

Additionally, it can be observed that for most methods,
especially those designed for VFIVQA, there is a more no-
ticeable decrease in correlation as the resolution increases
to 2160p. The reason for this could be that many methods
downsample the spatial resolution during the training pro-
cess, which may hinder the effective extraction of features
from high-resolution videos. However, it is worth noting that
the proposed VFIVQA-NR method performs well on 2160p
videos, indicating that the flow features are sensitive to the loss
of high-resolution details in the VFI process and are effective
in extracting features relevant to perceptual quality even for
high-resolution videos.

2) Frame-rate Subsets: The BVI-VFI dataset is divided into
three subsets based on video frame rates: 30fps, 60fps, and
120fps, with each subset containing 180 videos. The test re-
sults shown in the right part of Table V reveal that the proposed

methods exhibit the best correlation for each frame rate subset,
indicating good generalization across frame rate variations.
It is worth noting that most methods perform better on the
60fps subset compared to other subsets. This suggests that the
dataset contains more distinguishable features in this subset.
Therefore, it may be necessary for VFI methods to focus on
the quality of videos at the frame rate. In the 30fps subset,
IQA-based methods typically show a larger discrepancy from
VQA methods. However, as the frame rate increases, this
gap gradually diminishes. Additionally, when the frame rate
increases to 120fps, all methods show a significant decrease in
SROCC, while PLCC remains relatively high. This decrease
in SROCC may be due to the presence of subtle distortion
variations in high frame rate videos, leading to fluctuations
in objective predictions. This highlights the need for more
robust quality assessment methods capable of handling such
challenges.

D. Statistical Significance

The results of the ROC evaluation metrics mentioned in
Section IV-A4 are presented and analyzed in this section. Due
to the limitations of dataset labels, only datasets annotated with
MOSs and DMOSs are used for analysis. Following the pro-
cedures given in [66], raw absolute ratings are preprocessed.
Fig. 7 illustrates the Different/Similar and Better/Worse ROC
analyses and their corresponding statistical results. In each
analysis category, both FR and NR methods are compared
to provide a more intuitive understanding of the results. The
AUC results indicate that using the proposed framework on
the BVI-VFI dataset, whether in FR or NR scenarios, out-
performs other methods in accurately distinguishing between
Different/Similar and Better/Worse video pairs. Notably, the
proposed NR method exhibits particularly outstanding perfor-
mance. From the statistical significance results, it is evident
that both the VFIVQA-FR and VFIVQA-NR surpass other
methods. Similar conclusions can be drawn from the AUC
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(a) D/S results on BVI-VFI
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(b) B/W results on BVI-VFI
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(c) D/S results on VFIIQA
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(d) B/W results on VFIIQA

Fig. 7. Results of the Different/Similar (D/S) and Better/Worse (B/W) ROC analysis, and the corresponding statistical significance test results on the BVI-VFI
and VFIIQA datasets. In the ROC analysis (top line), 95% confidence intervals of the AUC values are shown. In the statistical significance results (bottom
line), a white/black block indicates that the row model is statistically better/worse than the column model. A gray block indicates that the row and column
models are statistically indistinguishable.
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Fig. 8. SROCC results of different feature extraction blocks, feature fusion
methods, and quality regressors. The box plots refer to ten results on the
BVI-VFI and VFIIQA datasets.

and statistical results on the VFIIQA dataset, where both FR
and NR methods achieve a relatively high level of accuracy.

E. Ablation Study

In this section, ablation experiments are conducted to verify
the effect of individual blocks at different stages in the FR
and NR methods. Aligned with the phases of the proposed
framework, three ablation experiments are designed, including

TABLE VI
ABLATION EXPERIMENT RESULTS ON BVI-VFI AND VFIIQA DATASETS.

Methods BVI-VFI VFIIQA
SROCC KROCC PLCC SROCC KROCC PLCC

MF-NR 0.560 0.396 0.634 0.506 0.359 0.547
MF-FR 0.662 0.481 0.730 0.696 0.506 0.710

MF-FR+FF 0.828 0.638 0.856 0.527 0.368 0.562
MF-FR+STS 0.709 0.515 0.686 0.412 0.289 0.499

MF-FR(f)+STS 0.761 0.565 0.754 0.584 0.421 0.658
Mul 0.824 0.639 0.855 0.774 0.583 0.784
Add 0.822 0.640 0.847 0.783 0.592 0.791

Mean 0.760 0.571 0.780 0.645 0.467 0.678
LF 0.786 0.600 0.818 0.733 0.548 0.750
FC 0.789 0.607 0.828 0.699 0.509 0.733

GRU 0.814 0.632 0.851 0.690 0.503 0.716
VFIVQA-NR 0.810 0.626 0.838 0.821 0.635 0.835
VFIVQA-FR 0.828 0.634 0.839 0.823 0.638 0.833

the feature extraction stage, the feature fusion stage, and the
quality regression stage.

In the feature extraction stage, the introduced flow feature
(FF) block and motion feature (MF) block are the two pivotal
components. First, as in [42], the motion feature extracted
from the last layer of the backbone without reference videos
is denoted as MF-NR. As proposed in VFIVQA-FR, the
method of extracting MFs from both reference videos and
VFI videos and concatenating them is referred to MF-FR.
Based on MF-FR, incorporating FF block as a supplementary
feature extraction method is represented as MF-FR+FF. In
this method, the extraction of FF includes the computation
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of CTS. On the other hand, combining the proposed STS
calculation with the MF-FR is represented as MF-FR+STS.
Furthermore, the MF block in VFIVQA-FR is frozen and
denoted as MF-FR(f)+STS in the ablation experiments. For
VFIVQA-NR, the feature extraction consists only of the FF
block, while for VFIVQA-FR, the feature extraction strategy
is MF-FR(f)+STS+FF.

For the feature fusion stage, the comparative strategies
include element-wise multiplication (Mul), addition (Add),
averaging (Mean), and the late fusion (LF) [44] of features.
In this paper, the feature fusion method employed is concate-
nation within an early phase. Regarding the quality regression
stage, the common practice involves regression using a fully
connected (FC) layer. Additionally, the GRU [67] is utilized
for regression modeling across the temporal dimension as a
supplementary strategy for continuity modeling in VQA.

The results of these experiments are presented in Table VI,
with more visually comparative results depicted in box plots in
Fig. 8 for the SROCC performances. All ablation experiments
are conducted on the same test set. Firstly, concerning feature
extraction, MF-NR exhibits poor performance in both datasets,
suggesting that independent motion features are insufficient
to perceive the quality of VFI videos. MF-FR achieves a
significant improvement in accuracy compared to MF-NR
by introducing reference information, but it is not optimal.
MF-FR+FF relies on flow features to effectively enhance
performance on the BVI-VFI dataset, demonstrating the effec-
tiveness of flow features in perceptual continuity perception.
However, for VFIIQA, which focuses on single-frame VFI
distortions, the accuracy is relatively poor. Comparison with
VFIVQA-NR indicates that the inappropriate use of MF leads
to a deterioration in perceptual accuracy for frames. On
the other hand, the results of MF+STS and MF-FR(f)+STS
prove that the calculation of STS with the MFs is beneficial
for the VFIVQA. The freezing of model parameters ensures
more stable feature learning. More importantly, incorporating
FF into VFIVQA-FR achieves optimal performance for both
entire videos and single frames.

The comparison of feature fusion strategies reveals that
simple fusion methods as well as the LF methods can impact
the representation of all features. The early fusion strategy
in VFIVQA-FR integrates multiple features more effectively
and performs better across different VFIVQA tasks. Finally,
regarding quality regression, both FC and GRU strategies do
not show significant improvement with the proposed features.
Instead, the strategies lead to a notable decrease in accuracy
for single-frame perceptual evaluation, indicating that the
proposed quality regression network is more effective.

F. Cross-database Evaluation

The generalization is an essential ability of the VQA
models. Several cross-database evaluation experiments are
conducted by training both IQA/VQA models on the BVI-
VFI and VFIIQA datasets and testing them on the remaining
datasets. The experimental results are shown in Table VII. The
VFIPS network trained on the BVI-VFI cannot be tested on
the VFIIQA dataset due to frame limitation. When training

TABLE VII
CROSS-DATABASE VALIDATION. THE BEAT PERFORMANCES ARE IN BOLD.

Train BVI-VFI VFIIQA
Test VFIIQA VFIPS BVI-VFI VFIPS

Method SROCC PLCC 2AFC SROCC PLCC 2AFC
LPIPS [23] 0.263 0.375 72.184 0.565 0.594 72.017
DISTS [61] 0.491 0.547 76.134 0.609 0.618 75.378

FloLPIPS [11] 0.471 0.570 71.092 0.553 0.575 72.268
VFIPS [10] - - 70.748 0.534 0.557 69.411

SimpleVQA [42] 0.463 0.402 68.933 0.524 0.557 67.772
FAST-VQA [43] 0.420 0.446 69.327 0.511 0.547 63.482

VFIVQA-FR 0.675 0.671 77.815 0.593 0.601 73.227
VFIVQA-NR 0.566 0.543 70.697 0.530 0.507 69.042

TABLE VIII
PARAMETERS AND RUNNING TIME OF THE PROPOSED METHODS AND

COMPETING METHODS.

Method SROCC Param(M) Runtime(s)
FloLPIPS [11] 0.733 2.47 0.0276

VFIPS [10] 0.743 4.60 0.0213
CVQA-FR [28] 0.708 24.51 0.0226
CVQA-NR [28] 0.608 30.75 0.0381
SimpleVQA [42] 0.750 24.72 0.0722
FAST-VQA [43] 0.744 28.13 0.2722

VFIVQA-FR 0.828 66.59 0.0433
VFIVQA-NR 0.810 33.30 0.0121

on the VFIIQA dataset, the network is adjusted as described
in Section IV-A1. From Table VII, it can be seen that the
VFIVQA-FR model trained on BVI-VFI achieves the best
performance in both FR and NR VQA models, demonstrating
the generalization capability of the proposed framework. The
performance of VFIVQA-NR is relatively low but still outper-
forms NR VQA methods. Although the results of VFIVQA-
FR and VFIVQA-NR are not the best when trained on the
VFIIQA dataset, they remain competitive. This may be due to
the lack of temporal information in this dataset, which prevents
the VQA models from temporal feature learning.

G. Computational Efficiency

The computational complexities of the proposed methods
and competing VQA methods have been compared. Neural
network-based methods have been selected for comparison,
and the number of parameters and running time for each
method are provided. Specifically, tests are conducted on 100
videos selected from the BVI-VFI dataset, with the average
GPU running time reported in Table VIII. All the methods are
tested on a computer with Intel Core i7-12700 CPU @2.10
GHz and NVIDIA GeForce RTX 3060 GPU. From Table VIII,
it can be seen that the running times of the proposed methods
are relatively short, particularly for VFIVQA-NR.

V. CONCLUSION

In this work, a novel objective VQA architecture for VFI
videos is proposed, comprising three main components: feature
extraction, feature fusion, and quality regression. The feature
extraction extracts novel flow features from the triplet frames,
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which are associated with temporal continuity, and motion fea-
tures from the key frames in the video. Furthermore, two sim-
ilarity computation methods are introduced in the respective
feature extraction blocks to obtain effectively representative
feature vectors. The architecture can be applied to both FR
and NR VFIVQA. Both the flow feature and motion feature
blocks are introduced in the FR method to obtain a more
accurate result, while only the flow feature block is applied
in the NR method for easier application. The VFIVQA-FR
and VFIVQA-NR are compared with SOTA methods on three
VFIVQA databases. The VFIVQA-FR achieves improvements
of 11.44% and 4.18% in SROCC on the BVI-VFI and VFIIQA
datasets, respectively. Moreover, the VFIVQA-NR is the first
VQA method specifically designed for VFI videos, achieving
SROCC improvements of 8.00% on BVI-VFI. Experimental
results indicate that the proposed methods generalize well to
videos with different spatial resolutions and frame rates. The
results of ablation experiments indicate that the flow features
and the corresponding similarity computations are crucial for
the quality assessment of VFI.
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