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ABSTRACT

We introduce Lumina-Image 2.0, an advanced text-to-image generation framework that achieves
significant progress compared to previous work, Lumina-Next. Lumina-Image 2.0 is built upon
two key principles: (1) Unification — it adopts a unified architecture (Unified Next-DiT) that treats
text and image tokens as a joint sequence, enabling natural cross-modal interactions and allowing
seamless task expansion. Besides, since high-quality captioners can provide semantically well-aligned
text-image training pairs, we introduce a unified captioning system, Unified Captioner (UniCap),
specifically designed for T2I generation tasks. UniCap excels at generating comprehensive and
accurate captions, accelerating convergence and enhancing prompt adherence. (2) Efficiency — to
improve the efficiency of our proposed model, we develop multi-stage progressive training strategies
and introduce inference acceleration techniques without compromising image quality. Extensive
evaluations on academic benchmarks and public text-to-image arenas show that Lumina-Image
2.0 delivers strong performances even with only 2.6B parameters, highlighting its scalability and
design efficiency. We have released our training details, code, and models at https://github.com/
Alpha-VLLM/Lumina- Image-2.0.

1 Introduction

Text-to-image (T2I) generative models have made significant strides over the past years. Notable open-source models [[1}
213114115, 16} [7), 18l 9% [10]] have shown significant improvements in both image fidelity and prompt adherence, thereby
broadening the scope of their applicability in diverse downstream tasks [[11} [12, |13} 14]. From these advancements, (1)
the scalable text-conditional Diffusion Transformer (DiT) architectures, and (2) the large-scale, high-quality text-image
datasets are witnessed as the most important factors for developing text-conditional image generative models.

However, existing models still exhibit notable limitations in both aspects. First, many text-conditional Diffusion
Transformers [[15} 18, (16} 17} [18},|19] continue to rely on cross-attention mechanisms to inject textual information. This
paradigm treats text embeddings as fixed external features, thus limiting the efficiency of multimodal fusion and may
even introduce uni-directional bias when using text embedding extracted from causal large language models [20]].
Moreover, extending these models to new tasks often requires specific architecture designs [[L1, 21]. Second, although
recent efforts [2, [15] 22]] have highlighted the importance of collecting high-quality image captions, the lack of a
dedicated captioning system tailored for T2I generation has resulted in inaccurate and insufficiently image captions for
text-image paired training data. The limitations in both architecture and data quality constrain the expressiveness of text
and visual representations, ultimately impairing the model’s ability to faithfully follow user instructions in generating
high-quality images.
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Figure 1: High-quality samples from our Lumina-Image 2.0, showcasing its capabilities in ultra-realistic, text generation,
artistic versatility, bilingual mastery, logical reasoning, and unified multi-image generation.

Driven by the aforementioned challenges, we present Lumina-Image 2.0, a unified and efficient T2I generative
framework that comprises four key components: (1) a Unified Next-DiT model for generating images that faithfully
aligned with the text input, (2) a Unified Captioner (UniCap) for producing high-quality text-image pairs, and a
series of specific designs for (3) efficient training and (4) efficient inference. Specifically, to address architectural
limitations, our Unified Next-DiT model utilizes a joint self-attention mechanism, enabling our model to process
both textual and visual tokens in a fully end-to-end manner, similar to decoder-only transformers in recent large



language models [23| 24} 25 26]. This design facilitates seamless multimodal interaction, allowing for the integration
of additional multimodal tokens or specific prompt templates to extend the model’s capabilities without modifying
the core architecture. In response to the scarcity of high-quality textual descriptions in paired text-image data, we
introduce Unified Captioner (UniCap), a unified captioning system specifically designed for T2I generation. UniCap
excels at precisely understanding complex scenes, and generating comprehensive and coherent multilingual descriptions.
Leveraging these capabilities, we employ UniCap to create multi-granularity, multi-dimensional textual descriptions
that better align with the images. Furthermore, our experiments reveal that when combining the unified Next-DiT and
UniCap for training, the text-to-image attention in transformer blocks dynamically adjusts its capacity based on the
length of textual embeddings, behaving similarly to a dynamic feed-forward network. This observation motivates us to
further enhance model capacity and performance by increasing the richness of textual descriptions without introducing
additional parameters.

Furthermore, both training and inference efficiency are crucial for model development and deployment. To perform
efficient training, Lumina-Image 2.0 employs a multi-stage progressive training strategy with hierarchical high-quality
data. The multi-domain system prompts and an auxiliary loss are further utilized to learn domain-specific knowledge and
preserve low-frequency features, respectively. For efficient inference, we adopt several advanced sampling techniques
and verify that the integration of CFG-Renormalization (CFG-Renorm) [27] and CFG-Truncation (CFG-Trunc) [28]]
can boost the sampling speed and maintain high sampling quality. Specifically, CFG-Renorm addresses the issue of
over saturation at large classifier-free guidance (CFG) scales, while CFG-Trunc streamlines the inference process by
eliminating redundant CFG computations, thereby enhancing both inference stability and speed. Additionally, we
incorporate Flow-DPM-Solver [8] and TeaCache [29] to further optimize inference speed.

We evaluate Lumina-Image 2.0 on publicly available benchmarks, including DPG [30], GenEval [31]], and T2I-
CompBench [32]. Considering the limitation of current academic benchmarks in comprehensively evaluating T21
models, we report the ELO rankings of Lumina-Image 2.0 on several online T2I arenas, which is evaluated by human
annotators. Our experimental results consistently demonstrate that Lumina-Image 2.0 achieves significant improvements
over previous model (Lumina-Next [[17]]). We release the complete training details, code, and models to facilitate the
full reproduction of Lumina-Image 2.0.

2 Related Work

Recent advancements in text-to-image generation have been remarkable. Diffusion-based models have progressively
transitioned from U-Net architectures [33]] to Diffusion Transformers [34]], as demonstrated by models such as
PixArt [15,135], FLUX [9], SD3 [36], Lumina [[16}[17], and SANA [8]]. These Diffusion Transformers exhibit superior
scalability and are progressively evolving toward a unified multimodal representation [37]]. Regarding text encoders,
early approaches [1] employed CLIP [38]], while subsequent works [22 [36, 9] additionally adopted T5-XXL [39].
More recently, SANA [8]], Lumina [17, 16] and our Lumina-Image 2.0 have incorporated Gemma [40]] as the text
encoder. Furthermore, the latest models leverage flow-based parameterizations [41}42]], which enhance both training
and inference efficiency compared to conventional diffusion methods. In parallel, a range of advanced autoregressive and
hybrid text-to-image models have emerged [43} 3,16, 44} 10, (7], achieving performance on par with their diffusion-based
counterparts. However, the sampling speed of these autoregressive models remains significantly slower than that of
diffusion-based approaches, posing a critical challenge for their practical deployment.

Meanwhile, the advancement of text-to-image models has been significantly shaped by the evolution of vision-
language models (VLMs) [45] 146, 47, 48], where the quality of image captions plays a critical role in both model
performance [2, 36]]. Currently, the most commonly employed image captioners in text-to-image research include
LLaVA [49], CogVLM [30], ShareGPT-4 [46], and Qwen-VL [51} 52, 53], all of which are general-purpose vision-
language models (VLMs). However, there is a significant lack of research focused on developing captioner models
specifically tailored for the text-to-image task, which may impede the further advancement of text-to-image models.

3 Revisiting Lumina-Next

Model Architecture. Lumina-Next [[17] introduces Next-DiT, a scalable flow-based diffusion transformer, as its core
architecture. Building upon the original diffusion transformer [34], Next-DiT employs sandwich normalization and
query-key normalization [54]] to enhance training stability, and leverages 2D Rotary Positional Encoding [55]] to encode
positional information of images. For text-to-image generation, Next-DiT utilizes zero-initialized gated cross-attention
to inject text embeddings extracted by Gemma [40].

Training and Inference Strategy. Lumina-Next is trained on approximately 20M synthetic text-image pairs, with
image captions generated using user prompts and VLM models. During training, Lumina-Next employs a multi-stage



progressive training approach, similar to recent text-to-image models [[15}[16]. This strategy involves sequential training
at 256, 512, and 1024 resolutions, enabling the model to progressively capture both low-frequency and high-frequency
information from images. During sampling, Lumina-Next introduces two time schedules tailored for flow models
to minimize the ODE truncation errors, and it supports both first-order and higher-order solvers, such as Euler and
Midpoint solvers.

Naive Data Scaling. Inspired by the data scaling paradigm of large-scale models [56, 24,57, 36], we believe that the
performance gap in Lumina-Next primarily stems from insufficient training data. Therefore, we scaled Lumina-Next’s
dataset from 20M to 200M samples. This expanded dataset encompasses diverse real and synthetic data processed by
the same cleaning and annotation pipeline. We retain the same model architecture and training strategy in Lumina-Next.
We observed that the model performance shows considerable improvement across various academic metrics compared
to Lumina-Next. For example, on the DPG benchmark [30], the performance improved from 75.66 to 85.80 after data
scaling. This demonstrates the effectiveness of Next-DiT as a robust framework for scalable image generation.

4 Lumina-Image 2.0

4.1 Framework Overview

Lumina-Image 2.0 establishes a unified and efficient framework by integrating Unified Next-DiT, Unified Captioner
(UniCap), and a set of efficient training and inference strategies. The overall pipeline is illustrated in Fig.[2] and we
apply a custom filtering pipeline [[15} 58] to select high-quality training images. To improve text quality, our UniCap
re-captions the training data to generate accurate and detailed textual descriptions at multiple levels of granularity. The
resulting high-quality image-text pairs are organized into a hierarchical training dataset, which is subsequently used to
optimize the Unified Next-DiT model using our proposed training strategies. Finally, several inference strategies are
further introduced to efficiently generate high-quality images.

4.2 Unified Next-DiT

After revisiting the architecture of Next-DiT, we observe that zero-initialized gated cross-attention for integrating text
embedding limits the capability of text-image alignment and also requires additional architecture modification when
adapting to new tasks. Therefore, we propose Unified Next-DiT, a unified text-to-image model that treats text and
images as a unified sequence to perform joint attention inspired by recent advances in unified multimodal learning [37].

Architecture of Unified Next-DiT. Next-DiT employs Gemma [40] as the text encoder, whose text embeddings exhibit
unidirectional positional bias [20] caused by the causal self-attention in the large language model. During generation, the
biased text embeddings are fixed and sparsely injected to the transformer block via zero-initialized gated cross-attention.
Therefore, we remove all zero-initialized gated cross-attention in Next-DiT. Instead, we leverage a unified single-stream
block that fuses caption embeddings and noised latent by concatenating them and performing joint self-attention, which
facilitates more effective text—image interaction and task expansion. As illustrated in Fig. 2] our single-stream blocks
build upon the original DiT block with the addition of sandwich normalization and query-key normalization to ensure
stable training. The Multimodal-RoPE [59] (mRoPE) is employed to jointly model text—image sequences in a unified
manner, which encodes the text length as well as the image’s height and width into three dimensions. Moreover, we
further observe that textual and visual features at the input level exhibit a considerable gap. To address this issue, we
introduce text and image processors prior to the single-stream blocks. These processors with similar but lightweight
single-stream blocks facilitate intra-modal information exchange and mitigate the gap between modalities. Since caption
embeddings are fixed for all timesteps, the text processor does not incorporate timestep conditioning.

Comparison with previous architectures. As illustrated in Fig.[3] we compare the architecture of Unified Next-DiT
with mainstream Diffusion Transformers. PixArt [[15] and Lumina-Next [[17] employ an additional cross-attention block
after self-attention to inject fixed text embeddings, whereas our model adopts a single, unified attention module that
jointly handles both text and noisy latent. Compared with the MMDiT architecture used in SD3 [36] and FLUX [9],
the key difference is that MMDIiT employs the double-stream blocks, allocating extensive and separate parameters
for text and image sequences. In contrast, our method is designed from a more unified perspective, utilizing a single
set of parameters to simultaneously model both the text and image sequences. Our model shares similarities with
OmniGen [37], which introduces a single-stream causal DiT architecture for unified image generation. In pursuit of
unifying the transformer architecture with auto-regressive models, OmniGen removes adaptive Layer Normalization
(adaLLN) and applies causal self-attention initialized from a large language model. However, adaLLN is considered
essential for Diffusion Transformers [34]], and initializing from a language model may introduce conflicts with the
knowledge for image generation.
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Figure 2: Overview of Lumina-Image 2.0, which consists of Unified Captioner and Unified Next-DiT. The Unified
Captioner re-captions web-crawled and synthetic images to construct hierarchical text-image pairs, which are then used
to optimize Unified Next-DiT with our efficient training strategy.

4.3 Unified Captioner

Due to the crucial role of image captions in enhancing model performance [2]], using out-of-box pre-trained Vision
Language Models (VLMs) for image recaptioning has been standard practice in previous literatures 36, 1533
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Figure 3: We compare the Diffusion Transformer architectures between our Unified Next-DiT, and PixArt [15], Lumina-
Next [17], Stable Diffusion 3 [36], OmniGen [37] and FLUX [9].

16, [17]]. However, these VLMs exhibit several limitations, including single-granularity descriptions, domain biases,
and fixed low-resolution inputs, which result in suboptimal caption quality and a noticeable gap from real-world user
prompts. To address these limitations and construct high-quality text-image datasets, we develop Unified Captioner
(UniCap), a captioning system that unifies diverse visual inputs and provides multi-granularity, multi-perspective,
and multi-lingual high-quality textual descriptions. In addition, we also introduce a unified perspective to make the
caption-driven model capacity more interpretable.

Unifying Textual Description. To enable Lumina-Image 2.0 to handle diverse prompts — ranging from multi-granularity,
multi-perspective, and multilingual descriptions — we train UniCap to deliver all types of descriptions to achieve unified
image recaptioning. In particular, our approach comprises three key components: (1) For multi-granularity descriptions,
we begin by carefully prompting GPT-40 [56] to generate highly detailed descriptions. Then we employ open-source
large language models (LLMs) to simultaneously summarize detailed captions into medium, short, and tag-based
descriptions for captioner training, which enables UniCap to deliver captions of multiple granularities while retaining
essential information, as shown in Fig.[7]and Fig.[§] (2) For multi-perspective descriptions, we include image style
descriptions, main object descriptions, all-object descriptions, object attribute descriptions, and spatial relationship
descriptions, ensuring comprehensive coverage of visual elements, attributes, spatial structures, and stylistic nuances.
(3) For multi-lingual descriptions, we utilize bilingual large language models to translate captions into Chinese, enabling
UniCap to generate bilingual captions simultaneously. Surprisingly, although UniCap only captions all data in English
and Chinese for Lumina-Image 2.0 training, the model benefits from Gemma’s multilingual capabilities and emerges
with the understanding of other languages, thereby expanding its accessibility to a broader user base (see Fig. [6).

Unifying Visual Understanding. Existing VLMs struggle with processing images from diverse domains and open-
world scenarios, and are limited to low-resolution inputs, making it difficult to capture fine-grained details of images.
To address this issue, we train UniCap with a caption dataset that encompasses a wide range of visual content, including
natural images, web-crawled images, photographs, synthetic images, multi-image documents, infographics, OCR-related
images, and multilingual content, ensuring comprehensive domain coverage and conceptual diversity. Besides, unlike
LLaVA [45] and ShareGPT4V [46], which resize images of varying scales and aspect ratios to a fixed low-resolution
format, our UniCap processes images at their native scale in a unified manner. This approach yields more accurate and
detailed captions, significantly reduces hallucinations, and improves OCR recognition. This strategy has been widely
adopted by recent VLMs, including SPHINX-X [48]], Intern VL [47]], and XComposer [60].

Furthermore, inspired by the concept of specialized generalist intelligence (SGI) [61], where Al systems excel in
specialized tasks while maintaining broad general abilities, we aim for Lumina-Image 2.0 to not only showcase powerful
text-conditioned generation capabilities but also serve as a unified interface for diverse visual generation tasks. To this
end, we collect annotations from various visual tasks, such as depth maps, pose maps, canny maps, and sketches. We
then concatenate them with paired images to form composite grids and leverage template captions (please refer to the
last row of Fig.|lI)) to effectively describe the underlying logical process. This unified approach enables Lumina-Image



2.0 to handle advanced tasks beyond text-to-image generation, thereby laying the foundation for potential downstream
applications.
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Figure 4: The training loss curve with respect to captions with different lengths. The “Avg. Length” represents the
average character number.

A Unified Perspective on Caption-Driven Model Capacity. The importance of detailed image captions has been
witnessed for scaling up diffusion models [2,136]. During the training of Lumina-Image 2.0, we specifically observed
that both the length and quality of image captions direct influence the model’s convergence speed. As shown in Fig.[4]
we train the model using three versions of image captions: (1) short captions generated by Florence [62], (2) short but
precise captions generated by our UniCap, and (3) long and detailed captions from UniCap. We observe that as captions
become more precise and detailed, the model’s convergence speed significantly improved. During the inference phase,
it is also commonly recognized by previous works [58},122]] that longer captions often lead to better generation results.
These observations motivate us to rethink the role of caption embeddings in text-to-image generation. To further analyze
the impact of image caption, in this paper, we provide an interpretable perspective on this phenomenon — the attention
operation between texts and images can be viewed as a dynamic feed-forward network (FFN), where the choice of
caption embeddings governs its effective knowledge integration and representational capacity.

Generally, the FFN layer of a transformer can be interpreted as a key-value memory that encapsulates the general
knowledge acquired by the model [[63], which can even be manually constructed without the need for training [64]. It
also has been shown that the FFN layer can be effectively substituted by self-attention with persistent memory [65].
Motivated by these findings, we further explore the relationship between the text-to-image attention and the FFN
mechanism. Note that the term “text-to-image attention” encompasses both the independent cross-attention used in
Next-DiT [17] and PixArt [35]], as well as the image-text interaction component in models performing joint self-attention
(e.g., our Unified Next-DiT).

Given a sequence of image tokens X € RZm*4 and a sequence of text tokens Y € RUexXd_ An ordinary image-text
attention can be equivalently rewritten in the form of FFN as follows:

Attn(X,Y) = o( X W (Y)) Wa(Y), (1)
where o (+) denotes the Softmax function, and the two “weight matrices” are conditioned on the text embeddings Y
T
Wo (Y W
i) = Lo ) gt @)
Vg
Wa(Y)=Y Wy € R, ?3)

where Wq, Wi, and Wy, are weight matrices for query, key, and value, respectively, and d}, is the dimension of query
/ key. Notably, the hidden dimension between W71 (Y) and W5(Y") changes dynamically with the context length as
Ly Under this formulation, the text-to-image attention computation can be viewed as an FFN whose parameters are
generated by a hyper-network, with dynamic weights and dynamic hidden size. Specifically, the conditional information
(i.e., the text) is encoded to form the dynamic weights, while the hidden size Ly will adjust the capacity of this
FFN-like module via its length.
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From this perspective, we reach an interesting conclusion — increasing caption length effectively serves as a controllable
means of scaling up model parameters. This insight suggests that the capacity of the model in both training and inference
can be modulated simply by adjusting the length of the caption, which can lead to improved knowledge learning and
overall performance. These findings are consistent with recent trends in existing work [66, [67]] and highlight promising
directions such as inference-time scaling [68]].

4.4 Efficient Training

Lumina-Image 2.0 introduces an efficient training framework that integrates multi-stage progressive training, a hierar-
chical high-quality dataset, multi-domain system prompts, and auxiliary loss. These strategies improve image quality
and detail refinement while accelerating convergence.

Multi-Stage Progressive Training. Unlike prior approaches [15}33}[17,[37] that optimize generative models over three
progressive resolution stages, we skip the intermediate 512 resolution stage and introduce an additional high-quality
tuning phase. This results in a three-stage progressive training pipeline: a low-resolution phase (256 resolution), a
high-resolution phase (1024 resolution), and a high-quality tuning phase (1024 resolution). In the low-resolution phase,
Lumina-Image 2.0 focuses on learning global and low-frequency information, such as domain knowledge, object
relationships, and structural patterns. The subsequent two phases first transfer this knowledge to higher resolutions and
further enhance fine-grained visual details.

Hierarchical High-quality Data. In contrast to Lumina-Next, which utilizes a fixed dataset in all training stages, we
construct a hierarchical dataset by filtering images based on image quality criteria (e.g., aesthetic) at different stages.
Specifically, we begin with a dataset of 110M samples. For the low-resolution training stage, we select 100M samples.
The remaining 10M samples, containing relatively higher-quality data, are then used in the high-resolution phase. From
these, we further curate a subset of the highest-quality 1M samples for the final fine-tuning stage.

Multi-domain System Prompt. We collect training data from diverse domains, including high-aesthetic synthetic data,
as well as photorealistic real-world data. However, there is a substantial domain gap between these datasets, often
resulting in slower convergence and difficulties in learning domain-specific knowledge. Motivated by ChatGPT [23]],
we propose distinct system prompts to differentiate between these domains, thereby reducing learning difficulty and
accelerating convergence. Specifically, during our proposed three-stage progressive training phase, we use two types of
system prompts (“Template A” and “Template B”) that are directly prepended to the image prompt, as shown in Tab.
For the unified multi-image generation, we introduce an additional fine-tuning phase (see Sec.[5.1] for details) with the
system prompt “Template C”.

Auxiliary Loss. When training our model on high-resolution images, the model exhibits significant improvements in
high-frequency details while some degradations in low-frequency structures. We introduce an auxiliary loss to address



Table 1: Prompt template for Lumina-Image 2.0. <Image Prompt> will be replaced with the user specific image
description. <lower half> and <upper half> will be replaced with the specific spatial relationships. will be
replaced with the target image type.

You are an assistant designed to generate high-quality images based on

Template A user prompts. <Prompt Start> <Image Prompt>

You are an assistant designed to generate superior images with the
Template B superior degree of image-text alignment based on textual prompts or
user prompts. <Prompt Start> <Image Prompt>

Generate a dual-panel image where the <lower half> displays a
Template C , while the <upper half> retains the original image for direct visual
comparison. <Prompt Start> <Image Prompt>

this issue, which computes the flow-matching objective [42] with latent features downsampled by a factor of 4:
Lax(8) = Evoe [[ve (20, 8) — el @)

where ¢ € [0, 1] denotes timestep, © = AvgPool, (z) denotes the downsampled latent features using average pooling
by a factor of 4, e ~ N(0, I) is random Gaussian noise, vg(-) and u; = = — € represent the predicted vector field and
target vector field, respectively. This approach helps preserve low-frequency features while learning high-frequency
details, enabling efficient knowledge integration and allowing direct fine-tuning at 1024 resolution.

4.5 Efficient Inference

To boost the sampling speed as much as possible while maintaining high sampling quality, Lumina-Image 2.0 makes a
deeper exploration on inference efficiency.

CFG-Renormalization (CFG-Renorm). Classifier-free guidance (CFG) [69]] is known for improving both visual
quality and text-image alignment. During inference, at each timestep ¢, the predicted velocity v; is calculated as
vy = vy, + w(ve, — vy, ), where w is the CFG scale, v, and v, represent the conditional and unconditional velocity,
respectively. However, scaling by a large w may introduce extremely high activations in certain dimensions of v,
and these abnormal values can result in visual artifacts in the final generated samples. To address this, recent work
introduces the CFG-Renorm method [27] to rescale the magnitude of the modified velocity of v; using that of the
conditional velocity v;,. We find that this technique effectively improves the stability of CFG-guided generation without
introducing additional computational costs.

CFG-Truncation (CFG-Trunc). Recent research [28]] indicates that text information is largely captured in the early
generation stages. Therefore, evaluating v;, beyond the early timesteps may be redundant. The CFG-Trunc can be
formulated as follows:

&)

where « denotes a predefined threshold. This modification can achieve over a 20% acceleration in sampling speed,
without visual degradation.

Flow-DPM-Solver (FDPM). Lumina-Next supports a range of ODE solvers, such as Midpoint and Euler method.
While these solvers ensure stability, they are relatively slow since they are not designed for flow models, requiring
a large number of function evaluations (NFE) for convergence. To improve this, we integrate FDPM [8, [70], which
modify DPM-Solver++ [70] to flow models, into Lumina-Image 2.0. FDPM achieves convergence in just 14-20 NFEs,
providing a faster sampling solution. However, we find that FDPM sometimes suffers from poor stability in practice.

Timestep Embedding Aware Cache (TeaCache). TeaCache [29] is designed to selectively cache informative
intermediate results during the inference, thereby accelerating diffusion models. TeaCache has successfully accelerated
various mainstream image and video generation models, including FLUX [9]], HunyuanVideo [58]], as well as Lumina-
Next. Building on its success, we integrate TeaCache into Lumina-Image 2.0. However, our experiments show that
TeaCache also introduces visual quality degradations when combined with the above techniques.

Discussion. The above four inference strategies are mutually compatible and can be applied in combination. Notably,
Lumina-Image 2.0 is the first to demonstrate that CFG-Renorm and CFG-Trunc provide complementary benefits when



applied together. CFG-Renorm addresses the issue of over-saturation and visual artifacts when the CFG scale is large,
while CFG-Trunc further alleviates this problem by eliminating redundant CFG calculations and achieving acceleration
at the same time. The flexibility of the CFG scale can be significantly extended to a wider range by combining these
techniques. FDPM and TeaCache can also be integrated into the pipeline, but both of them present certain challenges.
FDPM lacks sufficient stability and frequently produces suboptimal samples while TeaCache results in blurriness in the
sampled images. For further details, refer to Sec.[5.4]

5 Experiments

5.1 Implement Details

Training Dataset. Following the methods in [3} 4, 7136, [15} 137, [71]], we constructed a dataset combining both real and
synthetic data, and performed data filtering based on the techniques outlined in [[15} 22} 58], resulting in total 110M
samples. This dataset is reorganized into three training phases, with 100M, 10M, and 1M samples for each training
phase. As the dataset size decreased, the quality of the data progressively improved.

Architecture and Training Setups. The architecture configurations of our Unified Next-DiT model, along with a
comparison to Lumina-Next [[17], are summarized in Tab.[2] We employed 32 A100 GPUs across all three stages
to optimize our Unified Next-DiT. The corresponding training configurations are detailed in Tab. 3] In addition, for
multi-image generation task, we introduce an extra fine-tuning phase, where we consolidate different visual tasks into
image grids and generate captions for these concatenated grids to form image-pair pairs. Besides, for the UniCap model,
we finetune the Qwen2-VL-7B [59]] based on the constructed caption dataset with multi-domain visual data and diverse
textual descriptions.

Table 2: Comparison of configuration between Lumina-Next and Lumina-Image 2.0.

Model Params Patch Size Dimension Heads KV Heads Layers RMSNorm € [72] Pos. Emb.
Lumina-Next 1.7B 2 2304 16 8 24 1e~° 2D-RoPE
Lumina-Image 2.0 2.6B 2 2304 24 8 26 le™® M-RoPE

Table 3: Training configuration across different stages.

Stage Image Resolution #Images Training Steps (K) Batch Size Learning Rate GPU Days (A100)  Optimizer
Low Res. Stage 256x256 100M 144 1024 2 x 1074 191

High Res. Stage 10241024 10M 40 512 2x 107 176 AdamW [73]
HQ Tuning Stage 1024x 1024 IM 15 512 2x 1074 224

5.2 Quantitative Performance

Main Results. We evaluate our model on three benchmarks: GenEval [31]], DPG [30]], and T2I-CompBench [32]. As
shown in Tab. 4] Our model demonstrates strong performance across various metrics on the GenEval benchmark. In
the Two Object, Counting, Color Attribute, and Overall metrics, we achieve the second-best performance compared to
autoregressive and diffusion models. On the DPG benchmark, Lumina-Image 2.0 outperforms all compared models
across three sub-metrics (Entity, Relation, and Attribute) as well as the Overall metric. Similarly, on T2I-CompBench,
our model achieves the best results in both Color and Shape metrics. The significant advantage we achieve on the DPG
benchmark is attributed to the detailed and accurate captions curated by our carefully designed captioning system. Our
UniCap generates extremely long and detailed descriptions, which align with the characteristics of prompts contained
in DPG, resulting in the strong performance across various metrics, especially in the Relation score.

Compaison with ELO Scores. To better evaluate our model, we present evaluation results from three text-to-image
arenas, with all ELO scores [[76] based on ratings from human annotators. (1) We first perform tests on Artificial
Analysiﬂ As shown in Tab. |5} Lumina-Image 2.0 achieves mid-tier results, outperforming almost all open-source
models (e.g., SD3 [36] and Janus Pro [10]) and several closed-source systems (e.g., DALL-E 3 [2]), but still lags
behind the top closed-source models, such as FLUX Pro [9]. (2) To analyze the alignment and coherence abilities of
our model, we also provide rankings from Rapidateﬂ As shown in Tab. |6, our model achieves a comparable ranking.

*https://artificialanalysis.ai/text-to-image/arena?tab=Leaderboard
https://www.rapidata.ai/leaderboard/image-models
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Table 4: Performance comparison across different models on GenEval [31]], DPG [30]], and T2I-CompBench [32]
benchmarks. "|" or "1" indicate lower or higher values are better. Bold indicates the best performance, while underlining
denotes the second-best performance.

Methods # Params GenEval 1 DPG 1 T2I-CompBench 1
Two Obj. Counting Color Attri. Overall Entity Relation Attribute Overall Color Shape Texture
AutoRegressive Models
LlamaGen [4] 0.8B 0.34 0.21 0.04 0.32 - - - 65.16 - - -
Chameleon [S] 7B - - - 0.39 - - - - - - -
HART [6] 732M - - - - - - - 80.89 - - -
Show-o [3] 1.3B 0.52 0.49 0.28 0.53 - - - 67.48 - - -
Emu3 [7] 8.0B 0.81 0.49 0.45 0.66 87.17 90.61 86.33 81.60  0.7544 0.5706 0.7164
Infinity [44] 2B 0.85 - 0.57 0.73 - 90.76 - 83.46 - - -
Janus-Pro-1B [10] 1.5B 0.82 0.51 0.56 0.73 88.63 88.98 88.17 82.63 - - -
Janus-Pro-7B [10] 7B 0.89 0.59 0.66 0.80 88.90 89.32 89.40 84.19 - - -
Diffusion Models
LDM [1] 1.4B 0.29 0.23 0.05 0.37 - - - 63.18 - - -
SDv1.5 [1] 0.9B - - - 0.40 74.23 73.49 75.39 63.18 03730 0.3646 0.4219
Lumina-Next [17] 1.7B 0.49 0.38 0.15 0.46 83.78 89.78 82.67 75.66  0.5088 0.3386 0.4239
SDv2.1 [1] 0.9B 0.51 0.44 0.50 0.47 - - - 68.09  0.5694 0.4495 0.4982
PixArt-a [15] 0.6B 0.50 0.44 0.07 0.48 79.32 82.57 78.60 71.11  0.6886 0.5582 0.7044
SDXL [33] 2.6B 0.74 0.39 0.23 0.55 82.43 86.76 80.91 74.65  0.6369 0.5408 0.5637
SD3-medium [36] 2B 0.74 0.63 0.36 0.62 91.01 80.70 88.83 84.08 - - -
JanusFlow [74] 1.3B 0.59 0.45 0.42 0.63 87.31 89.79 87.39 80.09 - - -
Sana-0.6B [8] 0.6B 0.76 0.64 0.39 0.64 89.50  90.10 89.30 83.60 - - -
Sana-1.6B [8] 1.6B 0.77 0.62 0.47 0.66 91.50  91.90 88.90 84.80 - - -
DALL-E3 [2] - 0.87 0.47 0.45 0.67 89.61 90.58 88.39 83.50 0.8110 0.6750 0.8070
OmniGen [37] 3.8B 0.86 0.64 0.55 0.70 - - - - - - -
Sana-1.5 [67] 4.8B 0.85 0.77 0.54 0.72 - - - 85.00 - - -
Lumina-Image 2.0 2.6B 0.87 0.67 0.62 0.73 91.97 94.85 90.20 8720 0.8211 0.6028 0.7417

Table 5: Comparison of ELO scores evaluated in text-to-image

Table 6: Comparison of ELO scores evaluated in
text-to-image arena from Rapidata (as of February

arena from Acrtificial Analysis H (as of February 23, 2025). 23, 2025).
Methods /&\ Artificial Analysis Methods n { Rapidata
Overall Traditional Art Fantasy & Mythical Anime Overall Alignment Coherence

FLUXI1.1 [pro] [9] 1122 1075 1111 1127 FLUX1.1 [pro] [9] 1040 1036 1023

FLU).(I [pro] [9] 1107 983 1081 1051 Imagen 3 [75] 1018 1003 1032

Lumina-Image 2.0 982 1015 1051 1037

DALLE 3 2] 970 1008 1026 977 Lumina-Image 2.0 969 1031 986

SD3 Medium [36] 945 990 1026 929 DALLE 3 [2] 952 1022 958

Janus Pro [10] 748 828 784 766 SD3 Medium [36] 952 1022 984
Janus Pro [10] 734 932 947

In particular, Lumina-Image 2.0 ranks second only to FLUX Pro in terms of prompt alignment, exceeding many
other closed-source models such as Imagen 3 [[75]. This further validates the effectiveness of our proposed Unified
Next-DiT architecture and UniCap annotation system. Moreover, although Janus Pro[10] achieves state-of-the-art
results on academic benchmarks, its scores were considerably lower than those of Lumina-Image 2.0 and FLUX Pro on
user-driven leaderboards. This discrepancy highlights the inherent bias and limitations in current academic benchmarks.
(3) Finally, results from AGI-Eval E] in Tab.|7|demonstrate that Lumina-Image 2.0 significantly outperforms the previous
Lumina-Next [[17] as well as all other Chinese open-source models [77,22].

In summary, we hope that this comprehensive evaluation and comparative analysis will provide the community with a
clearer understanding of Lumina-Image 2.0’s capabilities and constraints, thereby guiding future improvements. We
also believe that developing better human-aligned evaluation benchmarks is essential to accurately assess current models
and advance generative modeling progress.

Shttps://ai-ceping.com/
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English: Dragons flying in the sky, Russian : JIpakonsl, neratomme B Hebe, German : Die drachen, die im himmel fliegen,

FISUR, fE= B, FEK. ZOLaRNEE. =5 mysterious atmosphere, scales flying on the TAMHCTBEHHAA aTMocdepa, Yelys, JeTsias die geheimnisvolle atmosphiire, die iiber den
BRI EAE, BRI HATGE. BIABEET 17 clouds, legendary presence, intense color and Ha/t o6J1aKaMu, JIereHIapHoe cyiiecTBoBatue,  wolken schwebenden fiden, die iiberhand Von

TS —ILDEETT . detail description. SPKOE OMHCAHHE LBETOB U AeTaleii. legenden, die scharfen farben und die details.

F 3 .
Chinese:BLFEHE, BIEHE Japanese: BE, AFO7O—XT v 7| English: Super real kitchen close-up, black Russian : CloppeanncTHIHbIH KyXOHHEIT German : Super-realistische Nahaufnahme
MREE, BREEEURE, BHEOHECOET ) XLOE, ROE, cat yellow pupil prism hair, silver dragon blue kpymHbii ruran: u@pHIii KOT ¢ EnTEIME riasamu  einer Kiiche, schwarze Katze mit gelben Augen
BLEE B, BEOKEFENBVHLOEONAD I soap bump color brick, magic light and 1 npusmaTieckoii mepctbio, Marmueckas urpa  und prismatischem Fell, magisches Licht und
SOhY ET, shadow high contrast. CBETa 1 TEHH C BBICOKO# KOHTPACTHOCTBIO. Schatten mit hohem Kontrast.

Chinese: 4T & H LA, A ML AH, Japanese: 7 & EE DAL R, English: Red and yellow wildflower field, Russian : [Tosie ¢ KPACHBIMH H KETHIMH German: Ein Feld mit roten und gelben

PRFERTNSHBR, ERIBE EICEY I DEDKR, RRICFESIER pink-leaved tree, thatched cottages, coastal LIBETAMH, JIEPEBO C PO3OBBIMH JHCTBSIMH Blumen, ein Baum mit rosa Bléttern links,
R, ZMEXR, FEHE, THER DR, BRISAFOR, FoABEE, town in the background. Soft blue sky, serene CJIeBa, JIEPEBEHCKHE 10Ma H NIPHOPEKHBII Reetdachhiuser und eine Kiistenstadt im
. s HEOFES. atmosphere. ropos Ha one. Markoe ronyGoe HeGo, Hintergrund. Sanfter blauer Himmel,
CroKoiiHas atmochepa. ruhige Atmosphare.

Figure 6: Visualization results of multilingual text-to-image generation by our Lumina-Image 2.0, covering five
languages: Chinese, Japanese, English, Russian, and German.

Table 7: Comparison of ELO scores evaluated in text-to-image arena from AGI-Eval @ (as of February 23, 2025).
Model FLUXI.1 [pro] [9] FLUX.1 [dev] [O] Lumina-Image 2.0 Kolors [77] HunyuanDiT [22] Lumina-Next [17]

Score 0.4859 0.4712 0.4545 0.3924 0.3920 0.3229

5.3 Qualitative Performance

Multi-lingual Generation. Compared to previous T2I models [15] that use CLIP [38]] and T5 [39] as text encoders,
we employ Gemma2-2b [79] as the text encoder, enabling our model to understand multiple languages. It naturally
exhibits zero-shot capability in languages such as German, Japanese, and Russian. As shown in Fig. [6| we present the
generation results in five different languages.

Captioning Everything With UniCap. We compare our proposed UniCap with existing captioners, such as
ShareGPT4V [46] and Florence [62]], from four dimensions: complex scenes, dense text, visual understanding,
and spatial relationships. UniCap supports multilingual annotations, including both Chinese and English, and can
generate captions of varying lengths to accommodate diverse user needs. As shown in Fig.[7 and Fig.[8] UniCap delivers
highly detailed and accurate descriptions, significantly outperforming the other two methods.

High-quality Image Generation. In Fig.[9] we present additional generation results of Lumina-Image 2.0. These
results illustrate that our model is capable of producing high-quality images in various resolutions that are visually
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Detailed: The image captures a bustling scene in a museum,
where the grandeur of history and the awe of artistry are on full
dlsplay The museum's high ceiling, adorned with ornate
ions, houses a1 kylight-that bathes the space in
natural llghl The walls;—painted—a—pristine—white, serve as a
canvas for an array of paintings that add a splash of color to the
otherwise monochrome—setting. The floor, made of polished
wood, reflects the light from above, creating a warm and inviting
atmosphere. Hanging from the ceiling are chandeliers, their
crystals catching the light and casting a soft glow throughout the
room. The museum is filled with exhibits that draw the attention
of the visitors. Dinosaur skeletons, their bones meticulously
arranged, offer a glimpse into the prehistoric era. Paintings, each
telling a story of its own, are arranged on the walls, inviting
viewers to lose themselves in the world of art. People are
scattered throughout the museum, some standing in quiet
lation, others walking around, their curiosity piqued by
the exhibits. Their actions bring life to the museum, making it
more than just a collection of artifacts; it's a living, breathing
space where history and art come to life.

LEARNING CLASSES

CERTIFIED ENGLISH LANGUAGE
TEACHER WITH OVER 5 YEARS
OF EXPERIENCE!

REGISTER NOW

MON-THU DAY

W, yeuvdomam com

CALL US
+000 0000 0000

Short (Florence): A promotional poster for online
English classes features a young man with a pencil and
book, bold text, and a call-to-action button on a dark blue
modern background.

@ Florence

Detailed: Wide-angle photograph of an expansive, ornate museum hall with a high, arched ceiling featuring a grid of glass panels. The hall is
filled with displayed on wooden platforms, arranged in rows along the length of the room. The central focus is a large,
dark-colored dinosaur skeleton prominently positioned in the middle of the hall. Visitors, including

@ ShareGPT4V

The upper walls are
adorned with framed artworks and decorative sculptures. The ceiling's intricate design and the warm, ambient lighting create a grand and
inviting atmosphere. The perspective is slightly elevated, capturing the grandeur and symmetry of the space. Photorealistic, high contrast,
‘warm color palette, museum interior, detailed textures, balanced composition, historical and educational ambiance.

Medium: In the grand hall of France, intricately detailed dinosaur skeletons are displayed on
wooden platforms, their large, ornate frames adorned with intricate carvings. The ceiling is supported by a series of arches and features a
skylight, allowing natural light to illuminate the space. The walls are adorned with various artworks and artifacts, and visitors can be seen
walking around, admiring the exhibits. The floor is made of wooden planks, and the overall ambiance of the museum is one of historical
significance and educational value.
Short: The Museum of Natural History in Paris, France, boasts an impressive interior with a high ceiling adorned with a grid of lights and
intricate architectural details. The walls are adorned with framed artworks and artifacts, while the floor is lined with wooden platforms
displaying various dinosaur skeletons. Visitors can be seen walking around, admiring the exhibits, and the overall ambiance is one of a grand
and well-maintained museum.
Tag: museum interior, dinosaur skeletons, ornate architecture, high ceiling, natural light, educational, grand, symmetrical composition, vibrant
colors
Detailed: 7£i% [ RN 5 A5 LIEWIRN, —ANEHEENZRGREN, BRE S NBCAMIE RBIEE RS XA 55
(VA o B RAERR, B RSO T T RIR B, b B SRR e [ BB DA % R RE R RS SRR, T Hb I
VIR BA ABII  BIe B RS ORI ARBIP & b WSRUEER R AT A5, AN RIS, T
e N ARBEM AT PR R 2 e R i T S, (R ST (SR A e i e 2
Medium: JEIAEMRAT, HRIEBRMEEAOHTIRBIETAR, kARG LUTIE. Sk R 3 SR BRI 2 AR S A SR
7%, T R E T MIBRAURE 51 A NERI (A MRS . e AT B0, AP AR L, DI IR 105 0 S I R
JER T BN, (EZSCRTHRLE B R E
Short: 7ELE BRI AP LIPIEN, — RSN RIERET, HORTERCRME R B BT TR B AR, 1k E 26k
LN 8. HiRBE b REMRE AR &R Z AR RAVE RO, T b e 8 MR AE 5] AR AR RIBEAE . IR R i, ik
B AR E I

ag: WMIENEE, HHRYE, MR, AL A
Sk, WFREIE, ERBEERE, PR

B, KR, BB, ARBR MR B, @RS, A%

Short (Florence): The Museum of Natural History in Paris features a grand interior with a high ceiling, framed artworks, and wooden
platforms showcasing dinosaur skeletons, where visitors explore and admire the exhibits.

Detailed: Promotional poster for online English learning classes, featuring a young man with short brown hair, smiling and holding a pencil
to his chin, positioned on the right side of the image. He wears a dark blue t-shirt and holds an open book in his left hand. The background is a
dark blue with circular bokeh patterns. On the left side, there is a large speech bubble containing text in white and blue fonts

The design is modern and clean, with a focus on clarity and readability, using a
limited color palette of blue, white, and black, digital graphic design, high contrast, professional, educational, inviting.

Medium: Promotional poster for online English learning classes featuring a young man in a blue shirt holding a pencil and an open book,
set against a dark blue background with circular patterns. The text highlights a certified teacher with over five years of experience, a

call-to-action, and details about class schedule and contact information. The design is modern, professional, and
emphasizes education.

Short: A promotional poster for online English learning classes features a young man in a blue shirt holding a pencil and an open book, with
bold text and a call-to-action button, set against a dark blue back d with a modern, p ional design.

Tag: Online English learning, advertisement, young man, dark blue shirt, yellow pencil, open book, dark blue background, white speech
bubble, text, registered teacher, experience, call to action, registration, contact number, logo, modern design, vibrant colors, professional,
engaging, promotional material.

Detailed: 7E£k2tif2: > E&E, l&lqﬂi*ﬁfﬂ%%ﬂ: MefEE R, GEHE, AFEE RTINS, £FEENE,
TFESEERE L, Ber b, RETUE, WEOMRER, WHEEEE. E0H - ANREGIEHE, BRI “HELILRSE
SIURFR, NIESEEIE S BT, A5 EL% ﬂﬂ/fﬂ& J—Z P, 0:00 AM-1:00 PM, www. yourdomain. com, HiiE+000
0000 0000” o # LAy “LOGO HERE” “*Ff. Vit JURMHBI, CREHE, MR, RS, LU HAAHERL.
Medium: FELIGELSRBH SRR T M F G EATIKER S 7, hFHEmEiis, ﬁ?miﬁiﬁéﬁ’)ﬂégia Ses?
R T ERIGEE AL A AT SELI M NEIOETE S BT 7 FFROET —A LRI 34, E S T E LR A
PR, DR —ARIE SR A . Bt BURE R, R T HENA.
Short: —AMEALIERIGES DWW, R T —MFERSTF R EMRE, 1%
VEN BT BRI R Ty

Tag: ELSGHIRE, EEEE, FRIET, HE S

SRR, CFhEGEMES, AT

PARBL, EHEEY

Detailed: The image is a vibrant advertisement for an online English learning class. Dominating the center of the image is a young man, smartly dressed in a blue shirt. He holds a yellow pencil in his mouth, perhaps
indicating his readiness to learn. His gaze is directed upwards and to the left, A promotional poster for online English classes features a young man with a pencil and book, bold text, and a call-to-action button on a dark blue

modern background. as if he's looking at

hing i ing. The b

of the image is a stark black, providing a striking contrast to the man and the white speech bubble hovering above him. The speech bubble

contains white text that reads “Online English Learning Classes” and “Certified English Language Teacher with over 5 years of experience! Register Now!”, clearly conveying the purpose of the advertisement. On the right
side of the image, there's additional white text that provides contact information for the class. It reads “Mon-Thu 9:00-AM-1:00 PM www.yourdomain.com Call Us=—--(000)-000-0000", guiding interested individuals on
how to reach out for more information or to enroll in the class. Overall, the image effectively communicates the details of an online English learning class, from its certified teacher to its schedule and contact information.

Figure 7: Comparison with ShareGPT4V [46] and Florence [62] in complex scenes and dense text for caption

generation. The

correspond to areas with more detailed and accurate descriptions, while red underline

and red-strikethrough represent the incorrect and insufficient descriptions respectively.

realistic, highly aesthetic, and creatively expressive. Furthermore, extensive experiments with both Chinese and English
prompts of different lengths demonstrate robust text-image alignment.

54

Ablation Study

Ablation Study on Multi-Stage Training Strategy. During our three-stage progressive training, the model’s per-
formance steadily improves as dataset size decreased and quality increased. As shown in Tab. [§] and Fig. [T0] the
performances continue to advance from the second to the third stage, evidenced by both quantitative improvements
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L% UniCap (Ours) @ ShareGPT4V (@ Florence

(8 Short (Florence): A top-down view of a plate with
halved figs and greens on a wooden table, alongside a black
and white line drawing, highlighting the contrast between

% realism and minimalism.

4
Coia

Detailed: of a plate with sliced figs arranged in a circular pattern on a wooden table. The figs are halved,
revealing their vibrant pink and red interiors with a purple outer skin. A small bunch of fresh green leaves, possibly arugula, is placed in the
center. The plate is a rustic blue ceramic with a brown rim. The lighting is natural, coming from the left, casting soft shadows and highlighting
the textures of the figs and leaves. Photorealistic, shallow depth of field, warm color palette, high contrast, natural lighting, rustic and organic
feel, visually balanced composition. of figs on a plate, featuring the same arrangement as the top
image. The figs are depicted with detailed line work, showing the intricate textures of the fruit's interior and skin. The plate is outlined with a
simple, thin line. The drawing has a sketch-like quality, emphasizing the organic shapes and forms of the figs. Minimalistic, monochrome, high
contrast, stylized illustration, focus on line art and texture, artistic representation of natural elements.

Medium: A top-down view of a blue ceramic plate with halved figs in a circular pattern, adorned with fresh green leaves, sits on a wooden
table. The figs display vibrant pink insides and purple skin. Below, a detailed black and white sketch of figs and leaves on a black background
provides a minimalist contrast. The scene features natural lighting, a warm color palette, and a balanced composition, highlighting the contrast
between the photorealistic image and the sketch.

Short: A top-down view of a plate with halved figs and fresh greens on a wooden table, accompanied by a detailed black and white line
drawing of figs and branches, showcasing a contrast between realistic photography and minimalist illustration.

Tag: Fig, blue ceramic plate, wooden table, green leaves, vibrant, natural lighting, shallow depth of field, rustic, artistic, minimalistic,
monochrome sketch, botanical illustration, contrast, texture, organic, elegant, visually balanced

Detailed: i, —AMMIRESTH TR AR, MAEAS Eo SPATrhn, ERAANEER, SRR T Sipa
ERAREES R B OGRENT, WTRERZME, BOSETAER . EAH R — AR A BTAERY) A AT 2%
o, PR AR KRB T R R B AR AR T IS B, IR ERMER, BE%, i,
ZRAKE, APURGE, ZARMIE, BT .

Medium: i )T K TEAE SRAE — IR G P Redlt 7 b, IR
—HRAHIR T B, S %%’rﬁﬁ’]@ﬂf , HEONEE, %LTLT’%E’J&E%E?H#
AR BLS R SR A G, I e BB EILR, G — %ﬂﬁi%\)\?\%ﬂ?@rﬂ‘]@m

Short: —ANFEiE /1AL R YA 16 P T LRI, R it mant, MOEEARRT L, A R A, fikh—
R -7 L b 3R A P

Tag: TR, BUHE, A, BRL SXHE MR, BEEXL 2R

Detailed: The image presents a striking contrast between two different perspectives of a plate of figs. In the top photo, a blue plate cradles six-figs, their vibrant red and purple hues standing out against the cool blue of the
plate. The figs are arranged in a circular pattern, creating a sense of symmetry and balance. A-sprig-of parsley-rests atop the figs, adding a touch of green to the otherwise monechromatic-palette. The bottom photo is a black
and white sketch of the same plate of figs. The absence of color focuses the viewer's attention on the shapes and forms within the composition. The figs, still life, and parsley are sketched with varying degrees of detail,

=

creating a layered effect that adds depth to the image. Despite-th

g Short (Florence): The i 1mage shows a-white-rabbitsitting
p-of-apinkand bl g d-shaped-objeet, with a bird
perched on top. To the r|ghl of the rabbit is a green object, and
in the background is a wall.

—the-i is rich in detail and contrast, offering a unique perspective on the simple yet captivating subject of a plate of figs.

Detailed: Minimalist still life composition featuring a white rabbit, a blue triangular prism, a pink cylindrical base, and a small bird.
, sitting on a reflective surface, facing right.
. A small bird with a yellow and black head perches
stands to the right, partially out of focus. The backdrop is a soft gradient of pink and white, creating a serene and balanced atmosphere. High-
key lighting, clean lines, smooth textures, pastel color palette, modern and abstract, visually balanced, playful yet sophisticated.

Medium: A minimalist still life with a white rabbit on a reflective surface, a blue triangular prism on a pink cylinder, and a small bird
perched on the prism. A large green cone stands in the background. The scene features a pastel color palette, high contrast, and a clean,
modern aesthetic with a balanced composition.

Short: A minimalist still life featuring a blue triangular prism on a pink cylinder with a perched bird and a white rabbit, set against a pastel
background with a green cone, creating a balanced and whimsical composition.

Tag: 3D rendering, surreal composition, geometric shapes, pastel colors, minimalist design, whimsical, high contrast, glossy textures,
playful, visually balanced.

Detailed: #BL9:E: LM, UL ETEAMZYA 38, '%“%?ﬂi*ﬂ&ﬁfﬂ%% , WEAN, B
B, RUNTIZ RIS )L, HEAREERMEBE,

. ’“Hmiﬂﬂ’]*ﬁﬁfﬁ 15 (0 AR SO, B H— A A
BRI . iR, AR, SHENERERK, SRR, RZARKEE, FEIREE, A8 T
Medium: — /MR E DS RR T — R AR TAAER ORI L, F0R— N EO=AMHESE LmEr— R0y, %
S AREREEEE, HRERMORLENEEHE. BRETROR%. SHENEEMIR. ABIEE,

Short: — M XMIDERS R, R T — MO MRS TR AR |, — RN S LBt b, —
RAGGTAERS, FREFMONLEMEE, Bk —ARiliE . s A meE.

Tag: MEEX, JUTHAR, SHEER, WK RRZR, 54, 5 %7, =Mk, WY, Sk T00E mdteE,
g, ARER

@ Detailed: In the image, a white rabbit is sitting on a pink pedestal. The rabbit is positioned on the left side of the pedestal. On the right side of the pedestal, there is a bird perched on a blue triangle. The bird is facing the
rabbit, creating a sense of interaction between the two animals. In the background, there is a green cone and-a-pusple-eylinder, adding a touch of color to the scene. The objects are arranged in a way that draws attention to
the interaction between the rabbit and the bird, making it the focal point of the image. The overall scene is a blend of colors and shapes, creating a visually appealing composition.

Figure 8: Comparison with ShareGPT4V [46] and Florence [62] in visual understanding and spatial relationships.

The correspond to areas with more detailed and accurate descriptions, while red underline and red
strikethrough represent the incorrect and insufficient descriptions respectively.

and loss curve trends. In the high-quality tuning stage, the model achieves substantial improvements within just 1K
steps, e.g. from 85.7 to 86.6 on the DPG benchmark and from 0.67 to 0.71 on the GenEval. However, as high-quality
tuning progressed, performance fluctuations are observed. Notably, at 11K steps in the third stage, the model continues
improving on DPG benchmark, whereas the performance declines slightly on GenEval.

Ablation Study on Efficient Inference Strategy. In Fig.[T1] we evaluate the inference efficiency of Lumina-Image 2.0
under a 1024-resolution setting using multiple inference strategies, including CFG-Renorm, CFG-Trunc, FDPM, and
TeaCache. First, our results show that the proposed CFG-Renorm and CFG-Trunc fusion method (Sec. [4.5) not only
saves sampling time but also has a negligible impact on the quality of the sampled results. Second, integrating FDPM
into our model can effectively reduce inference time. However, empirical evaluations indicate that FDPM suffers from
poor stability, negatively affecting sample quality during the generation process. Third, while incorporating TeaCache
further improves sampling speed, it significantly degrades image quality, often leading to blurriness. As a result, in
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{1. A serene photograph of a ginger and white cat sitting in a sunlit grassy field. The cat is positioned slightly to the right, gazing upwards with a calm
expression. Its fur is a Soft orange with distinct white patches on its chest and face. The foreground features out-of-focus blades of grass, creating a
. dreamy bokeh effect. The background is a blurred mix of soft greens and browns, suggesting a natural outdoor setting. The lighting is warm and golden,
*highlighting the cat's fur and casting gentle shadows. The image has a shallow depth of field, emphasizing the cat while the background remains softly
i blurred. Photoredlistic, tranquil, natural lighting, warm color palette, high contrast, intimate, peaceful atmosphere.
12. Gold and green mountain 3d illustration, in the style of fluid photography, orange and cyan, gold and cyan meticulous and detailed, Wang Ximeng,
{Northern Song Dynasty, Thousand-Mile Rivers and Mountains, Chinese landscape painting, traditional, vast and majestic, enchanting beauty, symbolism,
i glossy glass material, 4D render style, reflextions.

1. Steampunk architecture in the forest, reactor, rusty green color scheme with Studio Ghibli style, lots of defails,]
mechanical, green, forest, trees, moss, 8K, Unreal Engine, C4D rendering, Ultra HD details.

2. Book cover, A surreal double exposure portrait that blends a woman's face with a beautiful seascape. The overall moad]
is dreamy and mystical, with rich colors and intricate details.

3. Painterly Style, mixture of oil paints and acrylic paints and watercolors, clear evidence of the different paint mediums
| Style of Vincent Van Gogh, Style of Renoir, Style of Claude Monet, Style of Pierre Bonnard, Style of Camille Pissaro,
| Style of Paul Cezanne, a stunning dancer wearing a Iong and lowing gown with vibrant colos, sh i< wearing a shawl with;

broidery, he b rd t,

Dynaric photograph of Antelope Canyon, showcasing the inricate, swirling sandstane formations, The image captures the
canyon's inferior from a low angle, looking upwards Towards the sky. The sandstone walls, in shades of deep red and orange, fwist
and curve dramatically, creating a mesmerizing pattern. The sky is a clear, vibrant blue, visible through the narrow gaps between
the rocks. The lighting highlights the textures and layers of the sandstone, emphasizing the natural erosion patterns. The
composition is visually balanced, with the flowing lines of the canyon walls leading the eye towards the sky. High contrast, natural
lighting, warm color palette, photorealistic, sharp focus, dramatic, awe-inspiring, immersive, visually striking.

2. Portrait photo portrait of an Asian woman with long dark hair wearing a colorful headscarf tied around her forehead, seated
against a dimly it backdrop casting dramatic shadows across her face from window blinds or slatted light source behind her left
shoulder. She wears off-the-shoulder white blouse revealing part of black strap underneath; she gazes infently towards camera
creating strong eye contact. The lighting is high contrast highlighting facial features while leaving parts shadowed adding depth
and moodiness. Photorealistic quality captures fine textures like fabric folds and skin fones vivid yet natural color palette
emphasizes warm earthy hues contrasting deep shadows. Intimate composition focuses closely framing subject's upper forso and
face capturing emotion through subtle expression.

A close-up photograph of a fufted fitmouse perched on a branch, centered in the frame. The bird has a distinctive tuft of
Feathers on its head, a grey and white plumage, and a black beak, T's feet are gripping he branch firmly. Surrounding the bird are
thin, brown twigs adorned with small, red berries, adding a pop of color. The background is softly blurred, featuring a mix of muted
greens and browns, suggesting an outdoor setting. Natural lighting highlights the bird's feathers and the texture of the fwigs
Photorealistic, shallow depth of field, soft natural lighting, high contrast, sharp focus on the bird, warm color palefte, tranquil,
nature photography.

a’yoling person wearing headphones, sfanding in a lish, fropical jungle environment. The person is positioned in the lower right, facing}
left, partially obscured by large, overlapping green  eaves. They wear a hite Shict and dark pants, with a strap visible over their shoulder. The!
background is filled with dense foliage, including large banana leaves and various plants with orange flowers scattered throughout. The lighting is soft and |
diffused, creating a serene and immersive atmosphere. The color palette is dominated by various shades of green with subtle hints of orange and blue. |
The style is painterly with visible brushstrokes, giving a textured and organic feel. The composition is balanced, with a focus on the interplay between the |
figure and the surrounding nature. |
2. Aerial photograph capturing dynamic ocean waves with frothy white crests against deep blue water. The scene is filled entirely by swirling patterns
created as sunlight reflects off the surface, highlighting ripples and eddies across the frame. The central area features prominent foamy wave peaks
while surrounding areas display gentle undulations extending towards darker depths at the edges. High contrast enhances textures within each wave {
crest, creating an intricate play of light and shadow throughout. Photorealistic depiction, sharp focus, natural lighting emphasizes movement and fluidity. |

1. A child's drawing using crayons on a white piece of paper | a cityscape wm. mH crnokzd buildings, stick figure people
walking on the sfreef, cars fhat look like rectangles with wheels, and a big s the sky | Crayola, messy and lively.
2 SRS B LB LR LSS BN, BRE— OIS E N, b CHE- T
2%, FEEE—LXIE EHT. BEBNETSH a0k 5. HERAUE.

3. A vibrant photograph of a refreshing orange beverage in a fall glass, garnished with herbs, placed on a patferned
coaster an o wooden windousil, The gloss iscentrally positaned,costing o shadow o the right. The backgrourd features a
lush garden visible through a window, with green ferns and foliage creating a serene, natural backdrop. Sunlight stream:
from the left, highlighting the drink and creating a warm, inviting atmosphere. Photorealistic, natural lighting, high contrast.
vibrant color palette, sharp focus on the drink, soft focus on the background, tranquil, refreshing, visually balanced

SE=rSsLy

S

SN

i1 A hanging mobile made from CDs and vinyl records suspended from a chain in a room with beige walls. The mobile features a variety of discs,!

{including CDs and vinyls, arranged in a cascading fashion. The discs display a range of colors, including silver, black, and rainbow reflections, creating a
! shimmering effect. Below the mobile, a black sign with red neon letters reads \"ON AIR STUDIO\" sits on a wooden surface. To the right, a potted;
i plant with long, thin leaves is partially visible. The lighting is soft and natural, casting subtle shadows on the wall. The overall composition is balanced
{and centered, with a focus on the interplay of light and color on the discs. Indoor setting, eclectic, artistic, vintage, mixed media, visually engaging,
! harmonious arrangement. ;
(2 @R, TEHIED BAES RRR WRZT, —RVERSE—BRROIME L, ROARBISEEENETRER, MKATE
E-MEASBOIET. BREERORRES, ﬁﬂ&ﬁ%‘ﬂﬁdk%%§ AMRE, WHER, IDLHE i
13, Close-up portrait of a young woman's face, focusing on the right side. The image captures her ey, nose, and lips with meticulous detail. Her eye is
! adorned with glittery gold eyeshadow and long lashes, positioned in the upper left of the frame. Her skin is smooth and pale, with a natural complexion

§The ips ae fuland glossy. witha sublepink hu, ocated in the lomer lef. Strands of dark brown har pariall obscure the face, addig texture and

{ movement. The lighting is soft and diffused, highlighting the skin's texture and the glossiness of the lips. The composition is intimate and defailed,
i with a shallow depth of field that blurs the background, emphasizing the facial features. Photorealistic, high contrast, glossy textures, intimate, close-

{up portrait, soft lighting, detailed, visually striking.

STUDIO

View through rain-streaked window capturing an expansive rural landscape under dramatic skies. Raindrops cover the glass surface|
prominently across the foreground with varying sizes creating intricate patterns against blurred scenery beyond. The middle ground!
features muddy tracks leading into fields stretching towards distant hills or mountains along the horizon line af center-right edge. Darki
clouds dominate overhead casting shadows over greenery below whlle patches of blue sky peek through near left-center top corner |
suggesting impending weather change. Photographic composition emphasizes depth by blurring interior reflections onto exterior view.|
Moody atmosphere, high contrast due to dark stormy tones juxtaposed with lighter areas where sunlight breaks through, natural lighting !
filtered through cloud cover enhancing drama. |
2. Surreal digital collage depicting an imaginative tropical vacation scene atop a sandwich island floating over turquoise water under!
pastel skies with swirling clouds. The sandwich consists of fwo slices of foasted bread layered fogether filled with peanut butter and jelly|
positioned centrally against vibrant blue waters reflecting sunlight. On top sits sandy terrain where four miniature people lounge: one’
person stands near center-right while three others recline or sit around him—two on left side wearing hats and swimsuits, another couple
more towards right. Two palm trees rise from behind them adding verticality. A small metal ladder descends into the water at lower right |
edge suggesting access point. Dreamlike atmosphere, whimsical composition, high saturation colors, playful juxtapositions, phutorzullshc
fextures combined.with fantastical elements. ,

1 Close-up photo of an artificil ink oppe with a lossy inish placed cenfrally an a white ceraic plate. The appl has a relistic stom prutrudmg‘
from its top and is translucent, showcasing internal reflections and refractions. A silver fork lies diagonally across the lower right corner of the|
plate, partially overlapping if. The surface beneath is highly reflective, creating subtle reflections of both the plate and apple. Soft natural lighting
enhances the smooth fextures and highlights the apple’s glass-like quality. Minimalistic composition, high contrast, photorealistic rendering, clmn‘
aesthetic.

2. Digital painting depicting  serene profile portrait of a young woman with closed eyes facing left against a dark backdrop. Her hair flows |
seamlessly info several golden fish swimming gracefully around her head like efhereal streams. The fish have intricate scales reflecting light, |
adding luminous highlights fo their bodies. The warm fones of gold contrast sharply with the deep brown background, creating an otherworldly |
atmosphere. Soft brushstrokes blend the hair and fish fluidly, enhancing the dreamlike quality. High contrast, painterly fextures, surreal |
composition, warm color palette, mystical ambiance.

3. Surreal portrait photograph featuring a woman partially obscured by a large rectangular glass vase filled with water placed centrally on a white
tablecloth-covered surface. The vase distorts her facial features, creating an abstract reflection effect where only half of her face is visible /|
through the clear liquid. Her eyes appear magnified due to refraction effects within the water. She has dark hair pulled back neatly, wearing ;
subitle makeup emphasizing her lips and eyes. Background consists of muted green walls adding depth but remaining unobtrusive. Soft natural{
lighting casts gentle shadows around the vase, enhancing its transparency and clarity. High contrast highlights the sharp edges of the vase ugums?‘
the Soft focus of the subject’s features. Minimalistic composition, ethereal atmosphere, artistic

Figure 9: High-quality image generation examples from Lumina-Image 2.0, showcasing its precise prompt-following
ability and its capability to generate highly aesthetic and realistic images across different resolutions.
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Table 8: Performance Comparison Across Stages on DPG [30] and GenEval Benchmarks.

Stage Steps (K) DPG GenEval
Low Res. Stage 15 84.5 0.63
High Res. Stage 38 85.7 0.67
HQ Tuning Stage 1 86.6 0.71
HQ Tuning Stage 5 87.2 0.73
HQ Tuning Stage 11 87.6 0.72

Multi-Stage Training Loss Curve
0.50

—— 256/Low Res.
1024/High Res.
== 1024/HQ Tuning
0.45 4 DPG:87.6
GenE:0.72
DPG:86.6 1
GenE:0.71 1
0.40 - t :
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Figure 10: Loss curves for the three training stages, showing a steady performance increase in the DPG [30] and
GenEval [31]] benchmark.

FLUX.I-dev
(Baseline) GenEval: 0.67, DPG: 84.0 J 20.8s
/

Lumina-Next
(Baseline) GenEval: 0.46, DPG: 75.7 15.2s
]

Lumina-Image 2.0

+ CFG-Renorm
&CFG-Trunc

+ FDMP
(Unstable)

+ TeaCache
(visual degradation)

5|s 1|0s IISS 2I()s
Figure 11: Ablation study on efficient inference strategy. The performances are measured on a single A100 GPU with
batch size 1.

practical applications, we adopt Lumina-Image 2.0 with CFG-Renorm and CFG-Trunc as the final solution to balance
efficiency and quality.
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Overall Structure Errors Texture Detail Errors
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Figure 12: Generation defects of Lumina-Image 2.0, categorized into overall structural errors, texture detail errors, and
text errors.

6 Limitation

Although we have followed previous works [8) [15, 44, 10, 37] to evaluate our method on benchmarks such as
GenEval and T2ICompBench [32], achieving comparable performance with state-of-the-art models, we argue
that these academic benchmarks are not comprehensive and may sometimes fail to accurately assess image quality in
alignment with human perception. To illustrate this point, Fig.[I2] highlights several limitations of Lumina-Image 2.0.
First, for complex and diverse structures (e.g., human bodies) and for rare concepts in the training data (e.g., handguns),
our model struggles to consistently generate correct results. Second, when handling images with intricate textures, such
as densely crowded scenes or tire spokes, our model frequently generates disordered details. Finally, our model still
needs substantial improvements in accurately rendering long and complex text.

7 Conclusion

This paper introduces Lumina-Image 2.0, a unified and efficient text-to-image generative framework that achieves
strong performance in both image quality and prompt alignment. Specifically, a Unified Next-DiT model is developed
to generate high-quality images through the seamless integration of textual and visual information. A Unified Captioner
(UniCap) is proposed to produce detailed and accurate textual descriptions for constructing high-quality image-text
training pairs. In addition, a set of efficient training and inference strategies is developed to further optimize performance
while reducing computational costs. Lumina-Image 2.0 achieves promising performance on public benchmarks, and
provides a transparent, reproducible text-to-image generative framework. We hope that our model will contribute to
advancing the field of text-to-image generation.
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