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No-Reference Image Quality Assessment: Obtain
MOS From Image Quality Score Distribution
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Abstract— Recent image quality assessment (IQA) methods
typically focus on predicting the mean opinion score (MOS)
of image quality, ignoring the image quality score distribution.
This distribution provides valuable information beyond the MOS,
including the standard deviation of opinion scores (SOS) and
opinion scores at different quality levels. This paper introduces
a novel no-reference IQA method that predicts the image quality
score distribution to estimate the MOS. The proposed method
consists of three modules: a visual feature extraction module,
a graph convolutional module, and a MOS prediction module.
In the visual feature extraction module, a convolutional neural
network is designed to extract both first- and second-order visual
features of images. The graph convolutional module employs
a graph convolutional network (GCN)-based mapper to map
these visual features to the image quality score distribution by
exploring correlations between quality labels. The MOS is then
derived from the predicted image quality score distribution in
the MOS prediction module. We are the first to jointly train
the method using both the MOS and the image quality score
distribution, enabling it to learn richer subjective information
and improve prediction performance. To address the lack of
the ground-truth image quality score distribution in some IQA
databases, we propose to use a SOS assumption to generate
a Gaussian-based image quality score distribution that better
reflects subjective perception. Additionally, we design appropriate
loss functions for training. Experimental results demonstrate that
our method effectively predicts both the image quality score
distribution and the MOS, outperforming most state-of-the-art
IQA methods.

Index Terms— Image quality assessment, image quality score
distribution, GCN-based mapper, SOS assumption, loss functions.
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I. INTRODUCTION

ONE of the most significant areas of image processing
research is image quality assessment (IQA) [1], [2],

[3], [4]. Generally, IQA can be divided into subjective IQA
and objective IQA. Subjective IQA collects opinion scores
on image quality from a large number of subjects using
different quality labels. From these opinion scores, the mean
opinion score (MOS) is derived, providing a general measure
of perceptual image quality [5], [6], [7], [8], [9]. Furthermore,
some subjective IQA methods use the image quality score dis-
tribution, known as the distribution of opinion scores, to offer
a more comprehensive description of image quality [10],
[11]. Objective IQA quantitatively evaluates image quality
using mathematical models and algorithms. Depending on the
amount of reference image information used, objective IQA
methods are classified into fully-reference (FR) [12], [13],
reduced-reference (RR) [14], [15], [16], and no-reference (NR)
[17], [18], [19], [20], [21], [22] methods. NR IQA is partic-
ularly important due to the practical challenge of obtaining
reference images, making it a focal point of contemporary
research.

Conventional NR IQA methods extract handcrafted
low-level image features and utilize regression models to
predict image quality [23], [24], [25]. Recently, due to the
strong learning capacity of the convolutional neural network
(CNN), researchers have developed numerous CNN-based
methods that predict image quality by extracting high-level
visual features from images [26], [27], [28], [29], [30], [31].
Although notable advances have been made, most NR IQA
methods focus primarily on predicting the MOS, neglecting
the valuable information contained in the image quality score
distribution. This distribution provides not only the MOS but
also additional subjective information, such as the standard
deviation of opinion scores (SOS) and opinion scores at
different quality levels [10], [32], [33], [34]. The SOS reflects
the consistency or disagreement in quality perception, with a
smaller SOS suggesting more consistent and reliable quality
scores and a larger SOS indicating significant differences
in perception. Opinion scores at different quality levels can
provide a more comprehensive description of image quality.
Recently, several methods have been developed to predict the
image quality score distribution [10], [11], [35], [36], [37].
For example, Talebi et al. introduced NIMA to predict the
image quality score distribution [35]. Hosu et al. constructed
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Fig. 1. An image and its image quality score distribution.

the largest authentically distorted IQA database and proposed
a method to predict the image quality score distribution [11].
Gao et al. used the alpha stable model to parameterize the
image quality score distribution [10], [38]. In this paper,
we propose a NR IQA method that extracts rich visual features
from the image to predict the image quality score distribution,
which is then used to calculate the MOS.

The international telecommunication union (ITU) recom-
mends that subjects assess image quality using a five-level
scale [39]. This scale comprises five quality labels: ‘Bad’,
‘Poor’, ‘Fair’, ‘Good’, and ‘Excellent’, representing a range
of image quality from low to high. These quality labels are
widely recognized and commonly used in subjective IQA [10],
[11], [40], [41] and have influenced the prediction performance
of objective IQA methods. We suggest that the image quality
score distribution is closely related to these quality labels. For
example, as shown in Fig. 1, the probability of ‘Excellent’ and
‘Good’ co-occurring to describe image quality is high, whereas
the probability of ‘Fair’ and ‘Excellent’ co-occurring is very
low. This indicates that quality labels are correlated rather
than independently used to describe image quality. Moreover,
we observe that different pairs of quality labels do not have
the same probability of co-occurring to describe image quality,
which reflects the image quality score distribution. Based on
this analysis, we propose a graph convolutional module to
map image features to the image quality score distribution
by capturing correlations between quality labels. This module
constructs a graph convolutional network (GCN) on quality
labels using features extracted by the GloVe model [42] and
designs an effective correlation matrix to guide information
propagation between nodes, enabling the GCN to learn the
correlations between quality labels. In this way, we construct
an interdependent GCN-based mapper [43]. By applying the
GCN-based mapper to image features, the proposed method
can predict the image quality score distribution and subse-
quently calculate the MOS.

To enhance the ability of our method to learn richer
subjective information and improve prediction performance,
we jointly train the proposed method using both the MOS and
the image quality score distribution. A significant challenge is
the lack of the ground-truth image quality score distribution
in some IQA databases. To address this issue and improve
the applicability of our method, we develop various methods
to generate the image quality score distribution and design
suitable loss functions for training. For IQA databases that

provide the MOS and SOS of image quality, such as the
CSIQ [5], LIVE MD [40], LIVE Challenge [41], and CID2013
[44] databases, we directly generate the Gaussian-based image
quality score distribution using the provided MOS and SOS.
For IQA databases that provide only the MOS of image qual-
ity, such as the SPAQ [7] and VCLFER [45] databases, we first
calculate a specific SOS for each image based on the SOS
assumption [46] that accounts for consistency or disagreement
in quality perception. The calculated SOS aligns better with
subjective perception than directly assigning a uniform SOS
to all images [47]. We then use the calculated SOS and the
provided MOS to indirectly obtain the Gaussian-based image
quality score distribution.

In conclusion, this paper proposes a novel method for
predicting the image quality score distribution and subse-
quently calculating the MOS. The proposed method comprises
three modules: a visual feature extraction module, a graph
convolutional module, and a MOS prediction module. The
visual feature extraction module uses a CNN with a back-
bone network, a channel attention module (CAM), and global
pooling to extract image features. In the graph convolutional
module, a GCN-based mapper is designed to learn the map-
ping between image features and the image quality score
distribution. Finally, the MOS prediction module outputs both
the MOS and the image quality score distribution.

Here is a summary of the contributions made in this paper.
• We propose a novel NR IQA method that predicts both

the MOS and the image quality score distribution. This
method innovatively uses a GCN to learn the mapping
between image features and the image quality score
distribution by capturing the correlations between quality
labels.

• We propose training the method using both the MOS and
the image quality score distribution, allowing it to learn
richer subjective information and improve performance.
To address the issue of some IQA databases lacking the
ground-truth image quality score distribution, we intro-
duce a method for generating the Gaussian-based image
quality score distribution that better aligns with subjective
perception.

• We conduct extensive experiments that demonstrate the
superiority of the proposed method over state-of-the-
art IQA methods in predicting both the MOS of image
quality and the image quality score distribution.

The remaining sections of this paper are arranged as fol-
lows: In Section II, we introduce the proposed method in
detail. In Section III, we verify the effectiveness and feasi-
bility of the proposed method through extensive experiments.
Finally, in Section IV, we conclude the paper.

II. PROPOSED METHOD

This section introduces the proposed NR IQA method,
which includes a visual feature extraction module, a graph
convolutional module, and a MOS prediction module. The
framework of the method is shown in Fig. 2. In addition,
we propose training the method using both the MOS and
the image quality score distribution, with specifically designed
loss functions to enhance performance.
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Fig. 2. Framework of the proposed method. The blue background represents the visual feature extraction module, the yellow background indicates the graph
convolutional module, and the pink background illustrates the MOS prediction module and the training process (double-directional arrows). GAP means global
average pooling. GMP means global maximum pooling. GSP means global second-order pooling. Dotted lines in the first graph convolutional layer and solid
lines in the second graph convolutional layer indicate the correlations between quality labels. The blue circle with a black multiplication symbol indicates
that the extracted image features are processed by the GCN-based mapper.

A. Visual Feature Extraction Module

Due to subjective differences, individuals tend to focus on
different visual features of the same image. To better align
with human perception of image quality, representative image
features are extracted in the visual feature extraction module.
This module employs ResNet50 [48], a backbone network
renowned for its robust learning capabilities and superior
performance in visual tasks, to extract image features:

F = Res Net (I), (1)

where I is the input image and F is the extracted image
features. It is important to note that ResNet50 used in this
paper excludes the final global average pooling (GAP) and
fully-connected (FC) layer. Therefore, F consists of the image
features extracted from the last convolutional layer of ResNet-
50. To emphasize significant image features, CAM [49] is
employed to assign greater weights to these features:

F′
= C AM(F), (2)

where F′ represents the channel-weighted features.
Subsequently, first- and second-order visual features are

extracted. First-order visual features are obtained using GAP
and global maximum pooling (GMP):

F′

G AP = G AP(F′), F′

G M P = G M P(F′). (3)

Global pooling provides a comprehensive representation of
image features, which helps prevent overfitting and enhances
the consistency of feature maps [50]. Second-order visual
features, which have been shown to be effective in visual
recognition tasks [51], are extracted using global second-order

pooling (GSP) [52]:

F′

GS P = GS P(F′). (4)

This multi-order feature extraction captures intricate rela-
tionships between features, providing a more comprehensive
representation of the image [53].

Finally, by concatenating F′

G AP , F′

G M P , and F′

GS P , the
comprehensive visual features of the image I are obtained:

F′′
= F′

G AP ⊕ F′

G M P ⊕ F′

GS P , (5)

where F′′ is the image features extracted by the visual feature
extraction module, and ⊕ denotes the concatenation operation
along the feature channels.

B. Graph Convolutional Module

We design a graph convolutional module to map the
extracted image features to the image quality score distribution
by capturing the correlations between quality labels.

1) Label Feature Extraction: In subjective IQA, five quality
labels are commonly used to describe image quality: ‘Bad’,
‘Poor’, ‘Fair’, ‘Good’, and ‘Excellent’. These quality labels
guide subjects in assessing image quality. Although these
labels represent different levels of image quality, they are not
independent and often co-occurr to describe image quality.
To effectively capture and explore the correlations between
these quality labels, we first extract label features using
the GloVe model [42], which is a count-based statistical
word representation model. The extracted label features are
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as follows:

LB = GloVe(bad), LP = GloVe(poor),
LF = GloVe(fair), LG = GloVe(good),

LE = GloVe(excellent). (6)

2) Correlation Matrix: The GCN needs to propagate infor-
mation between nodes (labels) through a correlation matrix.
We construct an initial correlation matrix for the five qual-
ity labels in a data-driven manner. Specifically, in an IQA
database, we first calculate the number of times two labels
simultaneously describe the same image: Mi j , where i, j ∈

{1, 2, 3, 4, 5} = {bad, poor, fair, good, excellent}. This compu-
tation results in the label co-occurrence matrix:

M =


M11 M12 · · · M15
M21 M22 · · · M25
...

...
. . .

...

M51 M52 · · · M55

 . (7)

Then, the conditional probability matrix can be written as:

P =


P11 P12 · · · P15
P21 P22 · · · P25
...

...
. . .

...

P51 P52 · · · P55

 , (8)

where Pi j = P( j |i) = Mi j/Mi is the probability of label j
occurring when label i appears, in which Mi is the number
of times label i occurs. A smaller value of Pi j indicates a
weaker correlation between the two quality labels, while a
larger value indicates a stronger correlation. Then, the matrix
P is binarized [43], [54]:

Ai j =

{
0, Pi j < τ

1, Pi j ≥ τ ,
(9)

where τ is the threshold. Here, A = [Ai j ] ∈ R5×5 is the binary
correlation matrix. Finally, we re-weight A and obtain the final
correlation matrix Ã = [ Ãi j ] ∈ R5×5 [43], [54]:

Ãi j =

{
Ai j × (p/

∑5
j=1, j ̸=i Ai j ), i ̸= j

1 − p, i = j,
(10)

where p is the weight.
3) GCN-Based Mapper: Using the constructed correlation

matrix, the GCN can learn the correlations among nodes
(labels) by propagating information between them. The GCN
is applied to map the label features (i.e. Eq. (6)) into an
interdependent mapper, which is then used on the extracted
image features. Specifically, the GCN consists of two graph
convolutional layers [55] and one LeakyReLU layer [56].
The first graph convolutional layer takes the label features
L = [LB;LP ;LF ;LG;LE ] ∈ RN×D and the corresponding
correlation matrix Ã ∈ RN×N as inputs and learns new label
features L′

∈ RN×D′

using a layer-wise propagation rule
f (·, ·):

L′
= f (L, Ã), (11)

where N = 5 represents the number of labels, D represents
the dimension of the label features, and D′ represents the

dimension of the new label features. The output L′ is then
input into a LeakyReLU layer:

L′
= Leaky ReLU (L′). (12)

Finally, the second graph convolutional layer takes the label
features L′ and the correlation matrix Ã as inputs, generating
new label features L′′

∈ RN×D′′

using the propagation rule
f (·, ·):

L′′
= f (L′, Ã), (13)

where D′′ represents the dimension of the new label features,
which is equal to the dimension of F′′. L′′ is the proposed
GCN-based mapper.

C. MOS Prediction Module

By applying the GCN-based mapper L′′ to the extracted
image features F′′, we can predict the image quality score
distribution:

P̂ = { p̂1, p̂2, · · · , p̂N } = L′′F′′. (14)

The MOS can be calculated as follows:

M̂OS =

N∑
i=1

li p̂i , (15)

where li denotes the quality score assigned to the i-th quality
label.

D. Training and Loss Function

To enable our method to learn richer subjective information
and improve prediction performance, we train the proposed
method using both the MOS and the image quality score
distribution. The loss function designed in this paper consists
of a distribution-based loss function and a MOS-based loss
function.

1) Distribution-Based Loss Function: When designing the
distribution-based loss function, we consider three categories
of IQA databases. For IQA databases providing the image
quality score distribution, the distribution-based loss function
can be expressed as follows [57]:

Loss1 =

√√√√ 1
N

N∑
k=1

|

k∑
i=1

pi −

k∑
i=1

p̂i |2, (16)

where P = {p1, p2, · · · , pN } is the ground-truth image quality
score distribution.

Previous works [35], [36] assumed that the ground-truth
image quality score distribution follows a Gaussian distribu-
tion. In this paper, we obtain the Gaussian-based image quality
score distribution for IQA databases that provide both the
MOS and the SOS:

pi =
1

SOS
√

2π
e

−(si −MOS)2

2SOS2 , i = 1, 2, . . . , N . (17)
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Fig. 3. Training methods. From left to right, the training methods are tailored for three types of IQA databases: those that provide the image quality score
distribution, those that provide the MOS and SOS, and those that provide only the MOS. The white background represents the process of training the method
using the distribution-based loss function. The gray background represents the process of training the method using the MOS-based loss function. Equations
are highlighted in blue text. Gray text indicates information that is not directly provided by the database but generated using the corresponding equations.

By substituting Eq. (17) into Eq. (16), we use the following
distribution-based loss function to train the method:

Loss1 =

√√√√√ 1
N

N∑
k=1

|

k∑
i=1

(
e

−(si −MOS)2

2SOS2

SOS
√

2π
) −

k∑
i=1

p̂i |2. (18)

For IQA databases that provide only the MOS of
image quality, we use a SOS assumption to generate the
Gaussian-based image quality score distribution. Specifically,
we first calculate the SOS based on the SOS assumption [46]:

SOS2
= a(−MOS2

+ (s1 + sN)MOS − s1sN), (19)

where a is an empirical parameter, MOS is the ground-truth
MOS, and [s1,sN ] represents the quality scale. Zeng et al. [47]
simulated the Gaussian-based image quality score distribu-
tion by assigning the same SOS to all images. However,
high-quality and low-quality images tend to have more con-
centrated subjective scores with smaller SOS values, while
medium-quality images have more dispersed subjective scores
with larger SOS values [46]. This may be because high-quality
images are usually clear and detailed, and low-quality images
are visibly damaged, making them easy to rate consistently.
However, medium-quality images have less distinct quality
features, resulting in larger SOS values. Eq. (19) reveals
that the SOS is smaller when the MOS is high or low and
larger when the MOS is in the middle range. Therefore,
the Gaussian-based image quality score distribution generated
from Eq. (19) is more aligned with subjective perception.

Then, the calculated SOS and the provided MOS are substi-
tuted into Eqs. (17) and (16), the following distribution-based
loss function is used to train the method:

Loss1 =

(
1
N

N∑
k=1

∣∣∣∣ k∑
i=1

(
e

−(si −MOS)2

2(a(−MOS2+(s1+sN )MOS−s1sN ))
2

√
2πa(−MOS2

+(s1+sN )MOS−s1sN )

)

−

k∑
i=1

p̂i

∣∣∣∣2)
1
2

. (20)

2) MOS-Based Loss Function: All IQA databases pro-
vide the ground-truth MOS of image quality. Therefore, the
MOS-based loss function used in this paper is the norm-in-
norm loss with mean normalization [58]:

Loss2 =

(
MOS − MOSmean

MOSmax − MOSmin
−

M̂OS − M̂OSmean

M̂OSmax − M̂OSmin

)2

,

(21)

where MOSmean, MOSmax, and MOSmin are the mean, maxi-
mum, and minimum of ground-truth MOSs in a training batch.
Similarly, M̂OSmean, M̂OSmax, and M̂OSmin are the mean,
maximum, and minimum of the predicted MOSs in a training
batch.

In this paper, the distribution-based loss function Loss1 and
the MOS-based loss function Loss2 are combined to train the
method:

Loss =
1
M

M∑
m=1

Lossm
1 + α

1
M

M∑
m=1

Lossm
2 , (22)

where M is the training batch, Lossm
1 and Lossm

2 represent the
Loss1 and Loss2 of the m-th image in the training batch. The
parameter α is a constant greater than zero. Fig. 3 provides a
summary of the training methods developed for different IQA
databases. From left to right, the figure illustrates the training
methods designed for IQA databases that provide the image
quality score distribution, those that provide the MOS and SOS
of image quality, and those providing only the MOS of image
quality.

III. EXPERIMENTS

In the following section, we conduct experiments to verify
the feasibility and effectiveness of the proposed method.

A. Database

We select eight IQA databases to validate our method,
including the SJTU IQSD [10], KonIQ-10K (1024×768 pixel)
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TABLE I
INFORMATION ABOUT IQA DATABASES. ‘# DISTORTED’ IS THE NUMBER OF DISTORTED IMAGES.

‘# REFERENCE’ DENOTES THE NUMBER OF REFERENCE IMAGES

[11], CSIQ [5], LIVE MD [40], LIVE Challenge [41],
CID2013 [44], SPAQ [7], and VCLFER [45] databases. These
databases are classified into three categories, and experiments
are conducted on each category to evaluate the performance of
our method. Information about these databases is summarized
in Table I.

1) Distribution: The first category of IQA databases pro-
vides complete subjective opinion scores for image quality,
known as the image quality score distribution. For example,
the SJTU IQSD [10] and KonIQ-10K [11] databases.

The SJTU IQSD database is developed from the renowned
LIVE database. It has 779 distorted images and 29 ref-
erence images, with distortion types including JPEG2000
(JP2K), JPEG, white noise (WN), Gaussian blur (Gblur), and
fast-fading Rayleigh (FF). The authors invited 206 subjects
to rate these 808 images on a quality scale of [0, 100]. After
screening, each image has 187 valid subjective opinion scores.
These scores are publicly available as the image quality score
distribution for each image.

The KonIQ-10K database is one of the largest authenti-
cally distorted IQA databases comprising 10,073 images. This
database collected 1.2 million reliable quality scores through
crowd-sourcing. The quality score is divided into five quality
levels, corresponding to scores of 1, 2, 3, 4, and 5, which
represent image quality from bad to excellent. In addition,
the authors have released the number of scores at each quality
level for each image, which constitutes the image quality score
distribution.

2) MOS and SOS: The second category of IQA databases
provides the MOS and SOS of image quality, such as the
CSIQ [5], LIVE MD [40], LIVE Challenge [41], and CID2013
[44] databases.

The CSIQ database has 866 distorted images and 30 ref-
erence images. The distortion types include JPEG, JPEG2K,
overall contrast reduction, additive Gaussian noise, and Gblur.
The differential MOS (DMOS) of this database was obtained
from approximately 5,000 opinion scores provided by 25 sub-
jects, with a value range of [0,1]. The SOS of image quality
is also available.

The LIVE MD database is a multiply distorted IQA
database. The database has a total of 450 distorted images
and 15 reference images, involving two types of multiple
distortions. The first type of multiple distortion is image
storage, where the image is first blurred and then compressed
by a JPEG encoder. The second type of multiple distortion

is the camera image acquisition process, where the image is
first blurred due to narrow depth of field or other defocus and
then corrupted by white Gaussian noise to simulate sensor
noise. The database provides both the MOS and SOS of image
quality.

The LIVE Challenge database has 1,162 authentically
distorted images captured from many different portable elec-
tronics. The authors utilized Amazon’s crowdsourcing system
to collect subjective opinion scores. Each image was viewed
and rated online by an average of 175 subjects on a continuous
quality scale of [0,100]. The MOS and SOS of image quality
from this subjective assessment are available.

The CID2013 database has 474 real photographic images
captured by different digital cameras. The authors invited a
total of 188 subjects to rate these images. Each image was
viewed and rated by an average of 30 subjects on a continuous
quality scale of [0,100]. The authors have released the MOS
and SOS of image quality.

3) MOS: The third category of IQA databases provides
only the MOS for image quality, such as the SPAQ [7] and
VCLFER [45] databases.

The SPAQ database is currently the largest authentically
distorted database, consisting of 11,125 images taken by
66 smartphones. The author invited over 600 subjects to rate
the quality of these images on a continuous quality scale of
[0, 100]. Only the MOS is provided.

The VCLFER database contains 575 images. Among these
images, 23 are reference images. This database has four
different types of distortions, including average white Gaussian
noise (AWGN), Gblur, JPEG2K, and JPEG. Each distortion
type has six quality levels. 118 subjects were required to
rate the quality of these images on a continuous quality
scale of [0,100]. The authors release only the MOS of image
quality.

B. Experimental Setup

We first calculate the value of a for the first and second
categories of IQA databases according to Eq. (19). The six
figures in Fig. 4 show scatter plots and fitted curves of MOS
and SOS2 for the SJTU IQSD, KonIQ-10K, CSIQ, LIVE
MD, LIVE Challenge, and CID2013 databases, respectively.
As shown in Fig. 4, high-quality and low-quality images tend
to have smaller SOS values, while medium-quality images
have larger SOS values. From the fitted curve, the value
of a for each database is computed and summarized in the
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Fig. 4. Scatter plots and fitted curves of MOS and SOS2 for the SJTU IQSD, KonIQ-10K, CSIQ, LIVE MD, LIVE Challenge, and CID2013 databases.
Scatter points represent images, with the color from dark to light indicating an increase in the number of images. The red curves are fitted curves of MOS
and SOS2 according to Eq. (19). s1, sN , and a for each database are shown above each figure.

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND COMPETING METHODS FOR PREDICTING THE MOS OF IMAGE QUALITY ON THE FIRST

CATEGORY OF IQA DATABASES, i.e. SJTU IQSD AND KONIQ-10K DATABASES. THE BEST PERFORMANCES ARE IN BOLD

last column of Table I. The mean value of a across the
six IQA databases is 0.1304, which is set as the value of
a for the third category of IQA databases. By substituting
a = 0.1304 into Eq. (20), the Gaussian-based image quality
score distribution can be used for training on the third category
of IQA databases.

For the experiment, we randomly partition the database.
The training set comprises 80% of the images, and the
test set consists of the remaining 20%. For databases with
synthetically distorted images, we partition them into training
and test sets based on reference images. To minimize bias
from the randomness of the partitioning, we repeat the above
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TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND COMPETING METHODS FOR PREDICTING THE MOS OF IMAGE QUALITY ON THE SECOND

CATEGORY OF IQA DATABASES, i.e. CSIQ, LIVE MD, LIVE CHALLENGE, AND CID2013 DATABASES. THE BEST PERFORMANCES ARE IN BOLD

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND SOME

COMPETING METHODS FOR PREDICTING THE MOS OF IMAGE QUAL-
ITY ON THE THIRD CATEGORY OF IQA DATABASES, i.e. SPAQ AND

VCLFER DATABASES. THE BEST PERFORMANCES
ARE IN BOLD

partitioning procedure ten times and report the mean result.
More specifically, we train our method using the Adam opti-
mizer [59] with a learning rate of 10−4. During training and
testing, the image size is set to 448 × 448 pixels. The GloVe
model used in this paper is 50-dimensional. The training batch
size M is set to 8. The threshold τ is 0.05. The parameter p
is set to 0.25, α is set to 2.5, and D′ is set to 512. ResNet50
is pre-trained on the ImageNet database [60].

C. Competing Method

We compare the performance of the proposed method
with some competing IQA methods for predicting the MOS
of image quality. The methods include BRISQUE [23],
NIQE [24], BMPRI [25], Kang et al. [61], (Wa)DIQaM-
N [62], SGDNet [63], DBCNN [64], HyperIQA [65],
UNIQUE [66], DACNN [27], GraphIQA [67], NIMA [35],

Gao et al. [37], StairIQA [68], TSNIQA [69], and TOPIQ [70].
TOPIQ can be employed as either a FR or NR IQA method.
To ensure a fair comparison, this paper evaluates the predic-
tion performance of TOPIQ solely as a NR IQA method.
We analyze the prediction performance using three criteria:
Spearman rank correlation coefficient (SRCC), Pearson linear
correlation coefficient (PLCC), and root mean squared error
(RMSE). Better prediction performance is indicated by higher
SRCC and PLCC (close to 1) and lower RMSE (close to
0). Additionally, we compare the performance of the pro-
posed method with some competing methods for predicting
the image quality score distribution, including NIMA [35],
Liu et al. [36], IQSD-Alpha [10], KonCept512 [11], and
Gao et al. [37]. We analyze the prediction performance using
the following three criteria: Jensen-Shannon distance (JSD),
earth mover’s distance (EMD), RMSE, intersection, and cosine
similarity. Higher intersection and cosine (closer to 1) indicate
better prediction performance, while lower JSD, EMD, and
RMSE (closer to 0) indicate better prediction performance.

D. Performance Comparison

We first compare the performance of the proposed method
with competing methods for predicting the MOS, as reported
in Tables II, III, and IV. Table II shows the performance
results for predicting the MOS of image quality on the SJTU
IQSD and KonIQ-10K databases. The results show that our
proposed method achieves the best prediction performance,
demonstrating its effectiveness in obtaining the MOS of image
quality by predicting the image quality score distribution.
Table III shows the performance for predicting the MOS of
image quality on the CSIQ, LIVE MD, LIVE Challenge, and
CID2013 databases, where our proposed method also achieves
the best prediction performance on most databases. Table IV
shows the performance results for predicting the MOS of
image quality on the SPAQ and VCLFER databases, where our
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TABLE V
PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND COMPETING METHODS FOR PREDICTING THE IMAGE

QUALITY SCORE DISTRIBUTION. THE BEST PERFORMANCES ARE IN BOLD

Fig. 5. Image quality score distribution and MOS predicted by our method. Blue represents the predicted results, and red represents the ground truth.

proposed method consistently outperforms the other methods.
Tables III and IV indicate that it is effective to obtain the
MOS of image quality by predicting the Gaussian-based image
quality score distribution.

In addition, we compare the performance of the proposed
method and competing methods in predicting the image quality
score distribution, as shown in Table V. The results indicate
that our method performs best in predicting the image quality
score distribution on the KonIQ-10K database and remains
highly competitive on the SJTU IQSD database. In summary,
the proposed method demonstrates outstanding performance
in predicting both the MOS of image quality and the image
quality score distribution. Fig. 5 illustrates the predicted results
of the proposed method for three images from the KonIQ-
10K database, including the predicted image quality score
distribution and MOS. The predicted results (blue) are highly
consistent with the ground-truth image quality score distribu-
tions and MOSs (red).

E. Cross-Database Validation

Robustness is a crucial criterion for evaluating the effec-
tiveness of a method. In this subsection, we conduct
cross-database validations on the SJTU IQSD, KonIQ-10K,
CSIQ, CID2013, SPAQ, and VCLFER databases to test the
robustness of the proposed method and several competing
methods. Specifically, the method is trained on one database

and then tested on others to evaluate its performance in
predicting the MOS. The results are shown in Table VI.
When trained on the SJTU IQSD and CSIQ databases, the
proposed method achieves the best performance in predicting
the MOS on the KonIQ-10K database and shows competitive
performance on the VCLFER database. When trained on the
KonIQ-10K database, the proposed method achieves the best
performance in predicting the MOS on the SJTU IQSD and
SPAQ databases. When trained on the CID2013 database, the
proposed method achieves the best performance in predicting
the MOS on the SPAQ database and shows competitive
performance on the SJTU IQSD database. In conclusion,
the proposed method consistently outperforms most compet-
ing IQA methods across different databases, demonstrating
robustness in cross-database validations. This confirms the
effectiveness of our method.

F. Individual Distortions

The SJTU IQSD database is developed from the well-known
LIVE database. It contains 29 reference images and 779 dis-
torted images with distortion types including JP2K, JPEG,
WN, Gblur, and FF. We evaluate the proposed method and sev-
eral competing methods based on their prediction performance
for individual distortions within the SJTU IQSD database.
The results are shown in Table VII. From the table, it is
evident that for most distortion types, such as JPEG, WN,
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TABLE VI
CROSS-DATABASE VALIDATION.THE BEST PERFORMANCES ARE IN BOLD

TABLE VII
PREDICTION PERFORMANCE OF THE PROPOSED METHOD AND COMPETING METHODS ON INDIVIDUAL DISTORTIONS IN THE SJTU IQSD DATABASE.

THE BEST PERFORMANCES ARE IN BOLD

and Gblur, the proposed method outperforms the competing
methods. For JP2K, our method achieves the second-best
prediction performance. In conclusion, the proposed method
demonstrates outstanding prediction performance for most
individual distortions.

G. Ablation Analysis

Next, ablation analyses are conducted to demonstrate the
impact and importance of different network structures in the
proposed method on prediction performance.

1) Backbone Network: In this paper, the pre-trained
ResNet50 is used as the backbone network of the visual

feature extraction module. To evaluate the impact of dif-
ferent backbone networks, we replace ResNet50 with other
pre-trained networks, including AlexNet [71], VGG16 [72],
MobileNet [73], DenseNet [74], ViT [75], and Swin-T [76].
We compare the prediction performance of these backbone
networks on the SJTU IQSD database. The comparison results
are shown in Table VIII. From the table, it can be seen that
the proposed method achieves the best prediction performance
when ResNet50 is used as the backbone network.

2) First- and Second-Order Visual Features: After using
the backbone network to extract image features, we use G AP
and G M P to extract first-order visual features, while GS P
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TABLE VIII
IMPACT OF DIFFERENT BACKBONE NETWORKS ON THE PREDICTION PER-

FORMANCE OF THE PROPOSED METHOD. THE BEST PERFORMANCES
ARE IN BOLD

TABLE IX
IMPACT OF USING G AP , G M P , AND GS P TO EXTRACT FIRST- AND

SECOND-ORDER VISUAL FEATURES ON THE PREDICTION PERFOR-
MANCE OF THE PROPOSED METHOD. THE BEST PERFORMANCES

ARE IN BOLD

is used to extract second-order visual features. To evaluate
the impact of these extracted visual features on the predic-
tion performance of the proposed method, we construct six
comparison methods: The first comparison method uses G AP
to extract first-order visual features; the second comparison
method uses G M P to extract first-order visual features; the
third comparison method uses G AP and G M P to extract
first-order visual features; the fourth comparison method uses
only GS P to extract second-order visual features; the fifth
comparison method uses G AP and GS P to extract first- and
second-order visual features; the sixth comparison method
uses G M P and GS P to extract first- and second-order visual
features. The prediction performance of these six comparison
methods on the SJTU IQSD database is shown in Table IX.
The results indicate that the simultaneous use of G AP , G M P ,
and GS P to extract first- and second-order visual features
can significantly improve the prediction performance of the
proposed method.

3) Graph Convolutional Module: A crucial component of
the proposed method is the graph convolutional module,
which is used to predict the image quality score distribution.
To investigate the importance of this module, we construct
a comparison method that replaces the graph convolutional
module with a FC layer for mapping image features to the
image quality score distribution. The results are shown in
Table X. From the table, it can be seen that the proposed
graph convolutional module can improve the performance of
the method in predicting the MOS of image quality.

4) Loss Function: This paper uses the image quality
score distribution and the MOS of image quality to train
the proposed method simultaneously. Accordingly, we design
a distribution-based loss function and a MOS-based loss

TABLE X
IMPORTANCE OF THE GRAPH CONVOLUTIONAL MODULE FOR THE PRO-

POSED METHOD. THE BEST PERFORMANCES ARE IN BOLD

TABLE XI
IMPACT OF THE DISTRIBUTION-BASED LOSS FUNCTION AND THE

MOS-BASED LOSS FUNCTION ON THE PREDICTION PERFORMANCE OF
THE PROPOSED METHOD. THE BEST PERFORMANCES

ARE IN BOLD

function. To analyze the impact of these two loss functions
on the prediction performance, we construct two comparison
methods. The first method uses only the distribution-based loss
function for training, while the second method uses only the
MOS-based loss function. The comparison results are shown
in Table XI. The table shows that training the proposed method
using both the MOS and the image quality score distribution
effectively improves the prediction performance.

H. Parameter Analysis

1) a: To validate the effectiveness of the value of a, we train
the proposed method on the SJTU IQSD, KonIQ-10K, CSIQ,
LIVE MD, LIVE Challenge, and CID2013 databases using
both the distribution-based loss function from Eq. (20) and
the MOS-based loss function. The results are presented in
Table XII. These results suggest that, even with a fixed a =

0.1304, the proposed method maintains outstanding prediction
performance, demonstrating that this value is suitable for
various categories of IQA databases. In addition, Table XII
shows a relatively small decrease in prediction performance
across all databases compared to Tables II and III. This
indicates that using either the ground-truth image quality
score distribution or the ground-truth SOS to generate the
Gaussian-based image quality score distribution for training
improves the prediction performance of the method. Therefore,
we use the ground-truth image quality score distribution for
training on the SJTU IQSD and KonIQ-10K databases, while
utilizing the ground-truth SOS to generate the Gaussian-based
image quality score distribution for training on the CSIQ,
LIVE MD, LIVE Challenge, and CID2013 databases.

2) τ : In this paper, τ determines whether the correlation
between two quality labels is significant. A higher value of
τ means that only correlations with very high conditional
probabilities are considered significant, while a lower value of
τ allows more conditional probabilities to be considered sig-
nificantly correlated. We analyze the impact of different values
of τ on the prediction performance of the proposed method
on the SJTU IQSD and KonIQ-10K databases, as shown
in Fig. 6 (a). This figure indicates that the SRCC for both
databases remains relatively stable across different values of τ ,
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Fig. 6. Analysis of τ , α, and the dimension of the GloVe model on the SJTU IQSD and KonIQ-10K databases. (a) shows the prediction performance of
the proposed method with different τ . (b) shows the prediction performance of the proposed method with different α. (c) shows the prediction performance
of the proposed method with different dimensions of the GloVe model.

TABLE XII
PERFORMANCE OF THE PROPOSED METHOD FOR PREDICTING THE MOS

OF IMAGE QUALITY ON THE SJTU IQSD, KONIQ-10K, CSIQ, LIVE
MD, LIVE CHALLENGE, AND CID2013 DATABASES USING

EQ. (20) WHEN a IS SET TO 0.1304

demonstrating that the method is robust to changes in τ . For
the SJTU IQSD database, the optimal value of τ is around
0.05, where the highest SRCC is observed. As τ exceeds 0.05,
the prediction performance decreases slightly. For the KonIQ-
10K database, there are minimal differences in prediction
performance when τ is set to 0, 0.05, and 0.1. As τ exceeds
0.1, the prediction performance decreases slightly. Taking all
factors into consideration, setting τ to 0.05 may be beneficial
in achieving optimal prediction performance.

3) α: The hyper-parameter α represents the weight of the
MOS-based loss function. In this section, we analyze the
impact of different values of α on the prediction performance
of the proposed method on the SJTU IQSD and KonIQ-10K
databases. As shown in Fig. 6 (b), the prediction performance
on the KonIQ-10K database is more stable compared to that
on the SJTU IQSD database. This stability may be attributed
to the larger size of the KonIQ-10K database. When α is set to
2.5, the method achieves the best prediction performance on
both the SJTU IQSD and KonIQ-10K databases. Therefore,
we set the weight of the MOS-based loss function to 2.5.

4) Dimension of the GloVe Model: The GloVe model
used in this paper is 50-dimensional. In addition, the
authors in [42] provide 100-dimensional, 200-dimensional, and
300-dimensional GloVe models. In this section, we investigate
the impact of different dimensions of GloVe models on the
prediction performance of the proposed method on the SJTU
IQSD and KonIQ-10K databases. The results are shown in
Fig. 6 (c). From the figure, it can be seen that the dimension

TABLE XIII
RUNNING TIME OF THE PROPOSED METHOD AND COMPETING METHODS.

‘TIME’ REFERS TO THE AVERAGE SECOND OF TESTING ON AN IMAGE

of the GloVe model has minimal impact on the prediction per-
formance of the proposed method. When the 50-dimensional
GloVe model is used, the prediction performance is the best.
Therefore, it is appropriate to use the 50-dimensional GloVe
model in this paper.

I. Running Time

In this section, we compare the running time of the proposed
method with that of competing methods. We select 100 images
from the SJTU IQSD database and resize them to 224 ×

224 pixels. For network-based methods, we test the average
time using a computer with the NVIDIA GeForce RTX
3090 GPU. For conventional methods, we test the average
running time using the computer with the CPU. The results
are shown in Table XIII. From the table, it is evident that
conventional methods, such as NIQE, have the fastest running
time, followed by BRISQUE. This advantage is likely due
to their simpler architectures and computations. In contrast,
most network-based methods have longer running times due to
their more complex architectures and computations. Although
the running time of our proposed method is not the shortest,
it remains competitive with several competing methods. Its
strong prediction performance makes it highly suitable for
practical use in IQA tasks.
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IV. CONCLUSION

In this paper, we propose a novel NR IQA method that
predicts the MOS of image quality by leveraging the predicted
image quality score distribution. This method is divided into
three modules, including a visual feature extraction module,
a graph convolutional module, and a MOS prediction module.
First, we design a visual feature extraction module to extract
both first- and second-order visual features from the image.
Then, utilizing the correlations between quality labels, we con-
struct a GCN-based mapper. In the MOS prediction module,
this mapper is combined with the extracted image features
to predict the image quality score distribution, from which
the MOS can be derived. The proposed method is trained
jointly using the MOS and the image quality score distribution.
To address the lack of the ground-truth image quality score
distribution in some IQA databases, we introduce methods to
generate a Gaussian-based image quality score distribution that
aligns with subjective perception and design loss functions for
training. Experimental results validate the effectiveness of the
proposed method and demonstrate its superior performance
in predicting both the MOS of image quality and the image
quality score distribution compared to state-of-the-art IQA
methods.
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